Redistributing deaths by ill-defined and unspecified causes on cancer mortality in Brazil
DOI:
https://doi.org/10.11606/s1518-8787.2021055003319Palavras-chave:
Neoplasms, mortality, Data Accuracy, Vital Statistics, Cause of DeathResumo
OBJECTIVE to discuss the impact four different redistribution strategies have on the quantitative and temporal trends of cancer mortality assessment in Brazil. METHODOLOGY This study used anonymized and georeferenced data provided by the Brazilian Ministry of Health (BMoH). Four different approaches were used to conduct the redistribution of ill-defined deaths and garbage codes. Age-standardized mortality rates used the world population as reference. Prais-Winsten autoregression allowed the calculation of region, sex, and cancer type trends. RESULTS Death rates increased considerably in all regions after redistribution. Overall, Elisabeth B. França’s and the World Health Organization methods had a milder impact on trends and rate magnitudes when compared to the Global Burden of Disease (GBD) 2010 method. This study also observed that, when the BMoH dealt with the problem of redistributing ill-defined deaths, results were similar to those obtained by the GBD method. The redistribution methods also influenced the assessment of trends; however, differences were less pronounced. CONCLUSIONS Since developing a comparative gold standard is impossible, matching global techniques to local realities may be an alternative for methodological selection. In our study, the compatibility of the findings suggests how valid the GBD method is to the Brazilian context. However, caution is needed. Future studies should assess the impact of these methods as applied to the redistribution of deaths to type-specific neoplasms.
Referências
Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 2017;3(4):524-48. https://doi.org/10.1001/jamaoncol.2016.5688
World Health Organization, Department of Information, Evidence and Research. WHO methods and data sources for country‐level causes of death 2000‐2016. Geneva (CH); WHO; 2018. (Global Health Estimates Technical Paper WHO/HIS/IER/GHE/2018.30).
Maruthappu M, Watkins J, Noor AM, Williams CW, Ali R, Sullivan R, et al. Economic downturns, universal health coverage, and cancer mortality in high-income and middle-income countries, 1990-2010: a longitudinal analysis. Lancet. 2016;388(10045):684-95. https://doi.org/10.1016/S0140-6736(16)00577-8
Laurenti R, Jorge MHPM, Gotlieb SLD. A confiabilidade dos dados de mortalidade e morbidade por doenças crônicas não-transmissíveis. Cienc Saude Coletiva. 2004;9(4):909-20. https://doi.org/10.1590/S1413-81232004000400012
Naghavi M, Makela S, Foreman K, O’Brien J, Pourmalek F, Lozano R. Algorithms for enhancing public health utility of national causes-of-death data. Popul Health Metr. 2010;8:9. https://doi.org/10.1186/1478-7954-8-9
Szwarcwald CL, Morais-Neto OL, Frias PG, Souza Júnior PRB, Escalante JJC, Lima RB, et al. Busca ativa de óbitos e nascimentos no Nordeste e na Amazônia Legal: estimação das coberturas do SIM e do Sinasc nos municípios brasileiros. In: Ministério da Saúde (BR), Secretaria de Vigilância em Saúde, Departamento de Análise de Situação em Saúde. Saúde Brasil 2010 - Uma análise da situação de saúde e de evidências selecionadas de impacto de ações de vigilância em saúde. Brasília, DF; 2011. p.79-98. (Série G. Estatística e Informação em Saúde).
Lima EEC, Queiroz BL. Evolution of the deaths registry system in Brazil: associations with changes in the mortality profile, under-registration of death counts, and ill-defined cause of death. Cad Saude Publica. 2014;30(8):1721-30. https://doi.org/10.1590/0102-311X00131113
GBD 2016 Brazil Collaborators. Burden of disease in Brazil, 1990-2016: a systematic subnational analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10149):760-75. https://doi.org/10.1016/S0140-6736(18)31221-2
França E, Teixeira R, Ishitani L, Duncan BB, Cortez-Escalante JJ, Morais Neto OL, et al. Ill-defined causes of death in Brazil: a redistribution method based on the investigation of such causes. Rev Saude Publica. 2014;48(4):671-81. https://doi.org/10.1590/S0034-8910.2014048005146
Bierrenbach AL, Alencar GP, Martinez C, Souza MFM, Policena GM, França EB. Redistribution of heart failure deaths using two methods: linkage of hospital records with death certificate data and multiple causes of death data. Cad Saude Publica. 2019;35(5):e00135617. https://doi.org/10.1590/0102-311x00135617
Silva GA, Gamarra CJ, Girianelli VR, Valente JG. Tendência da mortalidade por câncer nas capitais e interior do Brasil entre 1980 e 2006. Rev Saude Publica. 2011;45(6):1009-18. https://doi.org/10.1590/S0034-89102011005000076
Braga SFM, Souza MC, Cherchiglia ML. Time trends for prostate cancer mortality in Brazil and its geographic regions: an age-period-cohort analysis. Cancer Epidemiol. 2017;50 (Pt A):53-9. https://doi.org/10.1016/j.canep.2017.07.016
Malta DC, Abreu DMX, Moura L, Lana GC, Azevedo G, França E. Trends in corrected lung cancer mortality rates in Brazil and regions. Rev Saude Publica. 2016;50:33. https://doi.org/10.1590/S1518-8787.2016050006209
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095-128. https://doi.org/10.1016/S0140-6736(12)61728-0
Pan American Health Organization. Revisions of the International Classification of Diseases (ICD-9 and ICD-10): impact on health statistics. Epidemiol Bull. 1996;17(2):1-5.
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736-88. https://doi.org/10.1016/S0140-6736(18)32203-7
Ahern RM, Lozano R, Naghavi M, Foreman K, Gakidou E, Murray CJL. Improving the public health utility of global cardiovascular mortality data: the rise of ischemic heart disease. Popul Health Metr. 2011;9:8. https://doi.org/10.1186/1478-7954-9-8
World Health Organization, Department of Health Statistics and Information Systems. WHO methods and data sources for global causes of death 2000-2011. Geneva (CH): WHO; 2013. (Global Health Estimates Technical Paper WHO/HIS/HSI/GHE/2013.3).
Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJL, Lozano R, Inoue M. Age standardization of rates: a new WHO standard. Geneva (CH): WHO; 2001. (GPE Discussion Paper Series; Nº 31).
Antunes JLF, Waldman EA. Trends and spatial distribution of deaths of children aged 12-60 months in São Paulo, Brazil, 1980-98. Bull World Health Organ. 2002;80(5):391-8.
Jorge MHPM, Laurenti R, Lima-Costa MF, Gotlieb SLD, Chiavegatto Filho ADP. A mortalidade de idosos no Brasil: a questão das causas mal definidas. Epidemiol Serv Saude. 2008;17(4):271-81. https://doi.org/10.5123/S1679-49742008000400004
Mikkelsen L, Phillips DE, AbouZahr C, Setel PW, Savigny D, Lozano R, et al. A global assessment of civil registration and vital statistics systems: monitoring data quality and progress. Lancet. 2015;386(10001):1395-406. https://doi.org/10.1016/S0140-6736(15)60171-4
Szwarcwald CL. Strategies for improving the monitoring of vital events in Brazil. Int J Epidemiol. 2008;37(4):738-44. https://doi.org/10.1093/ije/dyn130
Murray CJL, Lopez AD, World Health Organizatin, World Bank, Harvard School of Public Health. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: summary. Boston, MA: Harvard School of Public Health; 1996.
Phillips DE, Lozano R, Naghavi M, Atkinson C, Gonzalez-Medina D, Mikkelsen L, et al. A composite metric for assessing data on mortality and causes of death: the vital statistics performance index. Popul Health Metr. 2014;12:14. https://doi.org/ 10.1186/1478-7954-12-14
The University of Melbourne. Improving cause of death information. Guidance for assessing and interpreting the quality of mortality data using ANACONDA. Resources and Tools. Melbourne (AU): Bloomberg Philantropies; 2017. (CRVS Technical Guides).
Miki J, Rampatige R, Richards N, Adair T, Cortez-Escalante J, Vargas-Herrera J. Saving lives through certifying deaths: assessing the impact of two interventions to improve cause of death data in Perú. BMC Public Health. 2018;18(1):1329. https://doi.org/10.1186/s12889-018-6264-1
Ishitani LH, Cunha CC, Ladeira RM, Corrêa PRL, Santos MR, Rego MAS, et al. Evaluation of a smartphone application to improve medical certification of the cause of death. Rev Bras Epidemiol. 2019;22 Supl 3:E190014. https://doi.org/10.1590/1980-549720190014.supl.3
França EB. Códigos garbage declarados como causas de morte nas estatísticas de saúde [editorial]. Rev Bras Epidemiol. 2019;22 Supl 3:E190001. https://doi.org/10.1590/1980-549720190001.supl.3
Setel PW, Macfarlane SB, Szreter S, Mikkelsen L, Jha P, Stout S, et al. A scandal of invisibility: making everyone count by counting everyone. Lancet. 2007;370(9598):1569-77. https://doi.org/10.1016/S0140-6736(07)61307-5
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Alessandro Bigoni, Amanda Ramos da Cunha, José Leopoldo Ferreira Antunes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Como Citar
Dados de financiamento
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Números do Financiamento 2019/08017-6