Microcephaly measurement in adults and its association with clinical variables
DOI:
https://doi.org/10.11606/s1518-8787.2022056004175Palavras-chave:
Adult, Microcephaly, classification, Cephalometry, Dementia, Data MiningResumo
OBJECTIVE: To establish a microcephaly cut-off size in adults using head circumference as an indirect measure of brain size, as well as to explore factors associated with microcephaly via data mining. METHODS: In autopsy studies, head circumference was measured with an inelastic tape placed around the skull. Total brain volume was also directly measured. A linear regression was used to determine the association of head circumference with brain volume and clinical variables. Microcephaly was defined as head circumference that were two standard deviations below the mean of significant clinical variables. We further applied an association rule mining to find rules associating microcephaly with several sociodemographic and clinical variables. RESULTS: In our sample of 2,508 adults, the mean head circumference was 55.3 ± 2.7cm. Head circumference was related to height, cerebral volume, and sex (p < 0.001 for all). Microcephaly was present in 4.7% of the sample (n = 119). Out of 34,355 association rules, we found significant relationships between microcephaly and a clinical dementia rating (CDR) > 0.5 with an informant questionnaire on cognitive decline in the elderly (IQCODE) ≥ 3.4 (confidence: 100% and lift: 5.6), between microcephaly and a CDR > 0.5 with age over 70 years (confidence: 42% and lift: 2.4), and microcephaly and males (confidence: 68.1% and lift: 1.3). CONCLUSION: Head circumference was related to cerebral volume. Due to its low cost and easy use, head circumference can be used as a screening test for microcephaly, adjusting it for gender and height. Microcephaly was associated with dementia at old age.
Referências
Weaver DD, Christian JC. Familial variation of head size and adjustment for parental head circumference. J Pediatr. 1980;96(6):990-4. https://doi.org/10.1016/s0022-3476(80)80623-8
Hshieh TT, Fox ML, Kosar CM, Cavallari M, Guttmann CRG, Alsop D, et al. Head circumference as a useful surrogate for intracranial volume in older adults. Int Psychogeriatr. 2016;28(1):157-62. https://doi.org/10.1017/S104161021500037X
Ashwal S, Michelson D, Plawner L, Dobyns WB; Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Practice parameter: evaluation of the child with microcephaly (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2009;73(11):887-97. https://doi.org/10.1212/WNL.0b013e3181b783f7
Opitz JM, Holt MC. Microcephaly: general considerations and aids to nosology. J Craniofac Genet Dev Biol. 1990;10(2):175-204.
Roche AF, Mukherjee D, Guo SM. Head circumference growth patterns: birth to 18 years. Hum Biol. 1986 [cited 2021 April 15 ];58(6):893- 906. Available from: http://www.jstor.org/stable/41463831
Abuelo D. Microcephaly syndromes. Semin Pediatr Neurol. 2007;14(3):118-27. https://doi.org/10.1016/j.spen.2007.07.003
Krauss MJ. Morrissey AE, Winn HN, Amon E, Leet TL. Microcephaly: an epidemiologic analysis. Am J Obstet Gynecol. 2003;188(6):1484-90. https://doi.org/10.1067/mob.2003.452
Graves AB, Mortimes JA, Larson EB, Wenzlow A, Bowen JD, McCormick WC. Head circumference as a measure of cognitive reserve. Association with severity of impairment in Alzheimer’s disease. Br J Psychiatry. 1996;169(1):86-92. https://doi.org/10.1192/bjp.169.1.86
Chang S, Ong HL, Abdin E, Vaingankar JA, Jeyagurunathan A, Shafie S, et al. Head circumference, leg length and its association with dementia among older adult population in Singapore. Int J Geriatr Psychiatry. 2017;32(12):e1-9. https://doi.org/10.1002/gps.4643
Wang F, Mortimer JA, Ding D, Luo J, Zhao Q, Liang X, et al. Smaller head circumference combined with lower education predicts high risk of incident dementia: The Shanghai Aging Study. Neuroepidemiology. 2019;53(3-4):152-61. https://doi.org/10.1159/000501103
Illingworth RS, Eid EE. The head circumference in infants and other measurements to which it may be related. Acta Paediatr Scand. 1971;60(3):333-7. https://doi.org/10.1111/j.1651-2227.1971.tb06666.x
World Health Organization. head-circumference-for-age. Geneva (CH): WHO; 2021 [cited 15 April 2021]. Available from: http://www.who.int/childgrowth/standards/hc_for_age/en/index.html
Grinberg LT, Ferretti RE, Farfel JM, Leite R, Pasqualucci CA, Rosemberg S, et al.; Brazilian Aging Brain Study Group. Brain bank of the Brazilian Aging Brain Study Group: a milestone reached and more than 1,600 collected brains. Cell Tissue Bank. 2007;8(2):151-62. https://doi.org/10.1007/s10561-006-9022-z
Suemoto CK, Damico MV, Ferretti RE, Grinberg LT, Farfel JM, Leite REP, et al.; Brazilian Aging Brain Study Group. Depression and cardiovascular risk factors: evidence from a large postmortem sample. Int J Geriatr Psychiatry. 2013;28(5):487-93. https://doi.org/10.1002/gps.3850
Ferretti-Rebustini REL, Jacob-Filho W, Suemoto CK, Farfel JM, Leite REP, Grinberg LT, et al. Factors associated with morphometric brain changes in cognitively normal aging. Dement Neuropsychol. 2015;9(2):103-9. https://doi.org/10.1590/1980-57642015DN92000004
Ferretti REL, Damim AE, Brucki SMD, Morillo LS, Perroco TR, Campora F, et al. Post-mortem diagnosis of dementia by informant interview. Dement Neuropsychol. 2010;4(2):138-44. https://doi.org/10.1590/S1980-57642010DN40200011
Jorm AF. A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): development and cross-validation. Psychol Med. 1994;24(1):145-53. https://doi.org/10.1017/s003329170002691x
Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology.1993;43(11):2412-4. https://doi.org/10.1212/wnl.43.11.2412-a
Harrison JK, Stott DJ, McShane R, Noel-Storr AH, Swann-Price RS, Quinn TJ. Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for the early diagnosis of dementia across a variety of healthcare settings. Cochrane Database Syst Rev. 2016;(11):CD011333. https://doi.org/10.1002/14651858.CD011333.pub2
Son SJ, Lee KS, Oh BH, Hong CH. The effects of head circumference (HC) and lifetime alcohol consumption (AC) on cognitive function in the elderly. Arch Gerontol Geriatr. 2012;54(2):343-7. https://doi.org/10.1016/j.archger.2011.05.025
Tie K, Wang H, Wang X, Chen L. Measurement of bone mineral density in the tunnel regions for anterior cruciate ligament reconstruction by dual-energy X-ray absorptiometry, computed tomography scan, and the immersion technique based on Archimedes' principle. Arthroscopy. 2012;28(10):1464-71. https://doi.org/10.1016/j.arthro.2012.04.053
Agraawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 1993;22(2):207-16. https://doi.org/10.1145/170036.170072
Raz N, Rodrigue KM. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev. 2006;30(6):730-48. https://doi.org/10.1016/j.neubiorev.2006.07.001
Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 1988;23(2):138-44. https://doi.org/10.1002/ana.410230206
Mortimer JA, Snowdon DA, Markesbery WR. Head circumference, education and risk of dementia: findings from the Nun Study. J Clin Exp Neuropsychol. 2003;25(5):671-9. https://doi.org/10.1076/jcen.25.5.671.14584
Joshi S, Morley JE. Cognitive impairment. Med Clin North Am. 2006;90(5):769-87. https://doi.org/10.1016/j.mcna.2006.05.014
Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(3):223-30. https://doi.org/10.1016/j.bpsc.2017.11.007
Librenza-Garcia D, Kotzian BJ, Yang J, Mwangi B, Cao B, Lima LNP, et al. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci Biobehav Rev. 2017;80:538-54. https://doi.org/10.1016/j.neubiorev.2017.07.004
Chelly J, Mandel JL. Monogenic causes of X-linked mental retardation. Nat Rev Genet. 2001;2(9):669-80. https://doi.org/10.1038/35088558
Woodward M, Zhang X, Barzi F, Pan W, Ueshima H, Rodgers A, MacMahon S; Asia Pacific Cohort Studies Collaboration. The effects of diabetes on the risks of major cardiovascular diseases and death in the Asia-Pacific region. Diabetes Care. 2003;26(2):360-6. https://doi.org/10.2337/diacare.26.2.360
Konishi M, Kimura K. Estimation of brain volume from physical measurements. Anthropol Sci. 1995;103(3):279-90. https://doi.org/10.1537/ase.103.279
Baaré WFC, Hulshoff Pol HE, Boomsma DI, Posthuma D, Geus EJC, Schnack HG, et al. Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex. 2001;11(9):816-24. https://doi.org/10.1093/cercor/11.9.816
Bartholomeusz HH, Courchesne E, Karns CM. Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics. 2002;33(5):239-41. https://doi.org/10.1055/s-2002-36735
Kac G. [Secular height trend: a literature review]. Cad Saude Publica. 1999;15(3):451-61. Portuguese. https://doi.org/10.1590/S0102-311X1999000300002
Ishikawa T, Furuyama M, Oqawa J, Wada Y. Growth in head circumference from birth to fifteen years of age in Japan. Acta Paediatr Scand. 1987;76(5):824-8. https://doi.org/10.1111/j.1651-2227.1987.tb10571.x
Ounsted M, Moar VA, Scott A. Head circumference charts updated. Arch Dis Child. 1985;60(10):936-9. https://doi.org/10.1136/adc.60.10.936
Nunes PV, Suemoto CK, Leite REP, Ferretti-Rebustini REL, Pasqualucci CA, Nitrini R, et al. Factors associated with brain volume in major depression in older adults without dementia: results from a large autopsy study. Int J Geriatr Psychiatry. 2018;33(1):14-20. https://doi.org/10.1002/gps.4649
Nunes PV, Nascimento CF, Kim HK, Andreazza AC, Brentani HP, Suemoto CK, et al. Low brain-derived neurotrophic factor levels in post-mortem brains of older adults with depression and dementia in a large clinicopathological sample. J Affect Disord. 2018;241:176-81. https://doi.org/10.1016/j.jad.2018.08.025
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Nicole Rezende da Costa, Livia Mancine, Rogerio Salvini, Juliana de Melo Teixeira, Roberta Diehl Rodriguez, Renata Elaine Paraizo Leite, Camila Nascimento, Carlos Augusto Pasqualucci, Ricardo Nitrini, Wilson Jacob-Filho, Beny Lafer, Lea Tenenholz Grinberg, Claudia Kimie Suemoto, Paula Villela Nunes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Como Citar
Dados de financiamento
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Números do Financiamento 2016/24326-0 -
Fundação de Amparo à Pesquisa do Estado de São Paulo
Números do Financiamento 2017-07089-8 -
Fundação de Amparo à Pesquisa do Estado de São Paulo
Números do Financiamento 2018/16626-0 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Números do Financiamento 466763/2014-0 -
Instituto Federal Goiás
Números do Financiamento 23220.001846.2021-1