Efeitos combinados da fisioterapia e terapia robótica no equilíbrio e velocidade da marcha em pacientes com lesão medular incompleta
DOI:
https://doi.org/10.11606/issn.2317-0190.v26i3a166998Palavras-chave:
Marcha, Equilíbrio, Medicina Física e Reabilitação, Reabilitação Neurológica, Robótica, Traumatismos da Medula EspinalResumo
Restaurar a capacidade de andar é um dos objetivos da reabilitação na lesão medular incompleta (LMI). O treino orientado a tarefa abrange os princípios do aprendizado motor, envolvendo mecanismos de neuroplasticidade central e, consequentemente, reorganização cortical. O treinamento da marcha robótica G-EO System (GS) atua como um reforço da prática repetitiva e específica das fases da marcha. Objetivo: Investigar os efeitos combinados da fisioterapia e da terapia robótica na funcionalidade da marcha em relação ao equilíbrio e velocidade da marcha em pacientes com LMI. Métodos: Estudo de coorte retrospectivo com 14 pacientes na fase crônica da doença, que realizaram 20 sessões de GS associado à fisioterapia convencional (FC). Utilizamos o Teste de Caminhada de 10 Metros (TC10) e a Escala de Equilíbrio de Berg (EEB). Valores de p <0,05 foram considerados estatisticamente significativos pelo teste de Wilcoxon ao início da fisioterapia convencional e pré e pós intervenção. Resultados: Observou-se que no TC10, a velocidade inicial média variou de 2,60 m/s ± 1,72 no início da FC a 1,57 m/s ± 0,80 no final das 20 sessões de GS com p = 0,0424. Para a EEB no início da FC, a média foi de 31,85 pontos ± 12,50 e 42,35 ± 14,25 ao final da intervenção, com p = 0,0096. Conclusão: A terapia robótica da marcha associada à FC mostrou-se eficaz na promoção do equilíbrio e da melhora da velocidade da marcha em indivíduos na fase crônica da LMI.
Downloads
Referências
Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci. 2002;3(3):228-36. DOI: http://dx.doi.org/10.1038/nrn754
Car JH, Shepherd R. A motor relearning programme for stroke. London: Butterworth Heinemann; 1987.
Dobkin BH, Firestine A, West M, Saremi K, Woods R. Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage. 2004;23(1):370-81. DOI: http://dx.doi.org/10.1016/j.neuroimage.2004.06.008
Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210-6. DOI: http://dx.doi.org/10.1161/01.str.31.6.1210
Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292(15):1853-61. DOI: http://dx.doi.org/10.1001/jama.292.15.1853
Barbeau Barbeau H, Wainberg M, Finch L. Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987;25(3):341-4. DOI: http://dx.doi.org/10.1007/bf02447435
Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29(6):1122–1128. DOI: http://dx.doi.org/10.1161/01.str.29.6.1122
Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528-36. DOI: http://dx.doi.org/10.1016/S1474-4422(04)00851-8
Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7:30. DOI: http://dx.doi.org/10.1186/1743-0003-7-30
Reha Technology. G-EO System: training more, more effectively [text on the Internet]. Blue Bell: Reha Technology [cited 2019 out 31]. Available from: https://www.rehatechnology.com/wp-content/uploads/products/GEOSystem/G-EO-System-GS-PB_1806_EN_web.pdf
Hesse S, Tomelleri C, Bardeleben A, Werner C, Waldner A. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients. J Rehabil Res Dev. 2012;49(4):613-22. DOI: http://dx.doi.org/10.1682/jrrd.2011.08.0142
Salbach NM, Mayo NE, Higgins J, Ahmed S, Finch LE, Richards CL. Responsiveness and predictability of gait speed and other disability measures in acute stroke. Arch Phys Med Rehabil. 2001;82(9):1204-12. DOI: http://dx.doi.org/10.1053/apmr.2001.24907
Miyamoto ST, Lombardi Junior I, Berg KO, Ramos LR, Natour J. Brazilian version of the Berg balance scale. Braz J Med Biol Res. 2004;37(9):1411-21. DOI: http://dx.doi.org/10.1590/s0100-879x2004000900017
Silva GA, Schoeller SD, Gelbcke FL, Carvalho ZMF, Silva EMJP. Avaliação funcional de pessoas com lesão medular: utilização da Escala de Independência Funcional – MIF. Texto Contexto Enferm. 2012;21(4):929-36. DOI: https://doi.org/10.1590/S0104-07072012000400025
Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, Frotzler A, Ribeill C, Kalke YB, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018;56(2):106-116. DOI: http://dx.doi.org/10.1038/s41393-017-0013-7
Van Kammen K, Boonstra A, Reinders-Messelink H, den Otter R. The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking. PLoS One. 2014;9(9):e107323. DOI: http://dx.doi.org/10.1371/journal.pone.0107323
Lee SK. The effects of abdominal drawing-in maneuver during stair climbing on muscle activities of the trunk and legs. J Exerc Rehabil. 2019;15(2):224-228. DOI: http://dx.doi.org/10.12965/jer.1938056.028
Capecci M, Pournajaf S, Galafate D, Sale P, Le Pera D, Goffredo M, et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson's disease. A randomized controlled trial. Ann Phys Rehabil Med. 2019;62(5):303-12. DOI: http://dx.doi.org/10.1016/j.rehab.2019.06.016
Morone G, Matamala-Gomez M, Sanchez-Vives MV, Paolucci S, Iosa M. Watch your step! Who can recover stair climbing independence after stroke? Eur J Phys Rehabil Med. 2018;54(6):811-818. DOI: http://dx.doi.org/10.23736/S1973-9087.18.04809-8
Esquenazi A, Packel A. Robotic-assisted gait training and restoration. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S217-27. DOI: http://dx.doi.org/10.1097/PHM.0b013e31826bce18
Wu M, Landry JM, Kim J, Schmit BD, Yen SC, Macdonald J. Robotic resistance/assistance training improves locomotor function in individuals poststroke: a randomized controlled study. Arch Phys Med Rehabil. 2014;95(5):799-806. DOI: http://dx.doi.org/10.1016/j.apmr.2013.12.021
Neville BT, Murray D, Rosen KB, Bryson CA, Collins JP, Guccione AA. Effects of Performance-Based Training on Gait and Balance in Individuals With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2019;100(10):1888-1893. DOI: http://dx.doi.org/10.1016/j.apmr.2019.03.019
Mehrholz J, Harvey LA, Thomas S, Elsner B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017;55(8):722-729. DOI: http://dx.doi.org/10.1038/sc.2017.31