Effects of an inpatient rehabilitatin program in a unilateral transfermoral amputee: case report
DOI:
https://doi.org/10.11606/issn.2317-0190.v28i4a192612Keywords:
Amputation, Rehabilitation, Thermography, Treatment OutcomeAbstract
The inpatient rehabilitation program can bring several benefits to amputees. Objective: Verify the temperature of the lower limbs and the functionality of the amputee individual submitted to an inpatient rehabilitation program. Method: Male patient with left distal transfemoral amputation was evaluated by thermography (FLIR T650sc infrared sensor) of the thigh region, Timed Up and Go test, 2-minute walk test and after an inpatient program for rehabilitation for 4 weeks. Results: Regarding the thermographic evaluation, there was a decrease in the temperature difference between the right and left thighs, going from 1.9 °C to 0.6 °C in the anterior view and from 3.4 °C to 0.3 °C in posterior view after rehabilitation program. The TUG execution time went from 17.17 s to 13.08 s and an AMP scale went from 38 to 43 after the rehabilitation program. Conclusion: The amputee individual lower limb unilateral submitted to a 4-week inpatient rehabilitation program may benefit from symmetry in the distribution of skin temperature in the thigh, functional mobility and functionality.
Downloads
References
Jorge LL, Brito AM, Marchi FH, Hara AC, Battistella LR, Riberto M. New rehabilitation models for neurologic inpatients in Brazil. Disabil Rehabil. 2015;37(3):268-73. Doi: https://doi.org/10.3109/09638288.2014.914585
Filippo TRM, Alfieri FM, Daniel CR, Souza DR, Battistella LR. Modelo de reabilitação hospitalar após acidente vascular cerebral em país em desenvolvimento. Acta Fisiatr. 2017;24(1):44-47. Doi: https://doi.org/10.5935/0104-7795.20170009
Utiyama DMO, Alfieri FM, Santos ACA, Ribeiro CPC, Sales VC, Battistella LR. Effects of an inpatient physical rehabilitation program designed for amputees of traumatic or vascular etiologies. J Prosthet Orthot. In press 2021.
Sinha R, Van Den Heuvel WJ. A systematic literature review of quality of life in lower limb amputees. Disabil Rehabil. 2011;33(11):883-99. Doi: https://doi.org/10.3109/09638288.2010.514646
Rommers GM, Vos LD, Groothoff JW, Schuiling CH, Eisma WH. Epidemiology of lower limb amputees in the north of The Netherlands: aetiology, discharge destination and prosthetic use. Prosthet Orthot Int. 1997;21(2):92-9. Doi: https://doi.org/10.3109/03093649709164536
Pernot HF, Winnubst GM, Cluitmans JJ, De Witte LP. Amputees in limburg: incidence, morbidity and mortality, prosthetic supply, care utilisation and functional level after one year. Prosthet Orthot Int. 2000;24(2):90-6. Doi: https://doi.org/10.1080/03093640008726531
Narang IC, Mathur BP, Singh P, Jape VS. Functional capabilities of lower limb amputees. Prosthet Orthot Int. 1984;8(1):43-51. Doi: https://doi.org/10.3109/03093648409145345
Brasil. Ministério da Saúde. Diretrizes de atenção à pessoa amputada. Brasília (DF): Ministério da Saúde; 2013.
Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142-8. Doi: https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
Brooks D, Parsons J, Hunter JP, Devlin M, Walker J. The 2-minute walk test as a measure of functional improvement in persons with lower limb amputation. Arch Phys Med Rehabil. 2001;82(10):1478-83. Doi: https://doi.org/10.1053/apmr.2001.25153
Gailey RS, Roach KE, Applegate EB, Cho B, Cunniffe B, Licht S, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee's ability to ambulate. Arch Phys Med Rehabil. 2002;83(5):613-27. Doi: https://doi.org/10.1053/ampr.2002.32309
Spence VA, Walker WF, Troup IM, Murdoch G. Amputation of the ischemic limb: selection of the optimum site by thermography. Angiology. 1981;32(3):155-69. Doi: https://doi.org/10.1177/000331978103200302
Luk KD, Yeung PS, Leong JC. Thermography in the determination of amputation levels in ischaemic limbs. Int Orthop. 1986;10(2):79-81. Doi: https://doi.org/10.1007/BF00267745
Kristen H, Lukeschitsch G, Plattner F, Sigmund R, Resch P. Thermography as a means for quantitative assessment of stump and phantom pains. Prosthet Orthot Int. 1984;8(2):76-81. Doi: https://doi.org/10.3109/03093648409145352
Peery JT, Ledoux WR, Klute GK. Residual-limb skin temperature in transtibial sockets. J Rehabil Res Dev. 2005;42(2):147-54. Doi: https://doi.org/10.1682/jrrd.2004.01.0013
Klute GK, Huff E, Ledoux WR. Does activity affect residual limb skin temperatures? Clin Orthop Relat Res. 2014;472(10):3062-7. Doi: https://doi.org/10.1007/s11999-014-3741-4
Hagberg K, Brånemark R. Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int. 2001;25(3):186-94. Doi: https://doi.org/10.1080/03093640108726601
Hegedűs B. The Potential Role of Thermography in Determining the Efficacy of Stroke Rehabilitation. J Stroke Cerebrovasc Dis. 2018;27(2):309-314. Doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.045
Nowak I, Mraz M, Mraz M. Thermography assessment of spastic lower limb in patients after cerebral stroke undergoing rehabilitation. J Therm Anal Calorim. 2020;140:755-62. Doi: https://doi.org/10.1007/s10973-019-08844-y
Ülger Ö, Yıldırım Şahan T, Çelik SE. A systematic literature review of physiotherapy and rehabilitation approaches to lower-limb amputation. Physiother Theory Pract. 2018;34(11):821-34. Doi: https://doi.org/10.1080/09593985.2018.1425938
Szentkuti A, Kavanagh HS, Grazio S. Infrared thermography and image analysis for biomedical use. Periodicum Biologorum. 2011;113(4):385-92.
Jiang LJ, Ng EY, Yeo AC, Wu S, Pan F, Yau WY, Chen JH, Yang Y. A perspective on medical infrared imaging. J Med Eng Technol. 2005;29(6):257-67. Doi: https://doi.org/10.1080/03091900512331333158
Ring EFJ, Ammer K. The Technique of Infrared Imaging in Medicine. In: Ring F, Jung A, Zuber J. Infrared imaging: a casebook in clinical medicine. Bristol: IOP; 2015. p. 1-10. Doi: https://doi.org/10.1088/978-0-7503-1143-4ch1
Ring EF, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012;33(3):R33-46. Doi: https://doi.org/10.1088/0967-3334/33/3/R33
Fernández-Cuevas I, Bouzas Marins JC, Arnáiz-Lastras J, Gómez Carmona PM, Piñonosa Cano S, García-Concepción MA, et al. Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol. 2015;71:28-55. Doi: https://doi.org/10.1016/j.infrared.2015.02.007
Ammer K. The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int. 2008;18:125-44.
Marins JC, Fernandes AA, Cano SP, Moreira DG, Silva FS, Costa CM, et al. Thermal body patterns for healthy Brazilian adults (male and female). J Therm Biol. 2014;42:1-8. Doi: https://doi.org/10.1016/j.jtherbio.2014.02.020
Kakuta N, Yokoyama S, Mabuchi K. Human thermal models for evaluating infrared images. IEEE Eng Med Biol Mag. 2002;21(6):65-72. Doi: https://doi.org/10.1109/memb.2002.1175140
Alfieri FM, Battistella LR. Body temperature of healthy men evaluated by thermography: A study of reproducibility. Technol Health Care. 2018;26(3):559-564. Doi: https://doi.org/10.3233/THC-171164
Brooks D, Parsons J, Hunter JP, Devlin M, Walker J. The 2-minute walk test as a measure of functional improvement in persons with lower limb amputation. Arch Phys Med Rehabil. 2001;82(10):1478-83. Doi: https://doi.org/10.1053/apmr.2001.25153
Gailey RS, Roach KE, Applegate EB, Cho B, Cunniffe B, Licht S, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee's ability to ambulate. Arch Phys Med Rehabil. 2002;83(5):613-27. Doi: https://doi.org/10.1053/ampr.2002.32309
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Acta Fisiátrica

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.