Handgrip fatigue test using dynamic contractions in typical children

Authors

  • Emanuela Juvenal Martins Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto https://orcid.org/0000-0002-0400-0767
  • Camila Scarpino Barboza Franco Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto https://orcid.org/0000-0002-3192-026X
  • Lara Zaparoli Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto
  • Leticia Sanches Ravanelli Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto
  • Maira Verardino de Camargo Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto
  • Ana Cláudia Mattiello-Sverzut Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto https://orcid.org/0000-0002-4181-0718

DOI:

https://doi.org/10.11606/issn.2317-0190.v30i2a208192

Keywords:

Fatigue, Hand Strength, Muscle Strength Dynamometer, Child

Abstract

Objective: To verify the development of fatigue and sex-influence on the handgrip during dynamic contractions in typical children. Methods: Cross-section study. Fifty-eight children, distributed into two groups according to sex (30 boys), aged 8 to 12 years, of both sexes, performed successive dynamic contractions with a bulb dynamometer until they reached maximum perceived effort. The values from the first, the last contractions of the fatigue test, and the measure after 30-s of the last contraction (recovery contraction) were recorded and compared using the linear regression model with mixed effects. T-Student test was used to compare the perceived effort scores and time-to-fatigue between groups. Results: The handgrip values significantly decreased, and perceived effort scores significantly increased in the final measure in relation to the initial measure of the fatigue test. After the fatigue handgrip test, 30-sec of recovery was insufficient to restore the baseline handgrip values. There were no differences between the female and male groups for all variables. Conclusion: The handgrip fatigue test using dynamic contractions showed it efficiently induces motor and perceived fatigue in children, without differences between sexes.

Downloads

Download data is not yet available.

References

Silva GR, Pitangui AC, Xavier MK, Correia-Júnior MA, De Araújo RC. Prevalence of musculoskeletal pain in adolescents and association with computer and videogame use. J Pediatr (Rio J). 2016;92(2):188-96. Doi: https://doi.org/10.1016/j.jped.2015.06.006

Radwan NL, Ibrahim MM, Mahmoud WSE. Evaluating hand performance and strength in children with high rates of smartphone usage: an observational study. J Phys Ther Sci. 2020;32(1):65-71. Doi: https://doi.org/10.1589/jpts.32.65

Din ST. Relationship of smartphone addiction with hand grip strength and upper limb disability. Ann Clin Med Case Rep. 2021; 6(6): 1-7.

Manworren RC, Stinson J. Pediatric Pain Measurement, Assessment, and Evaluation. Semin Pediatr Neurol. 2016;23(3):189-200. Doi: https://doi.org/10.1016/j.spen.2016.10.001

Brusa J, Maggio MC, Giustino V, Thomas E, Zangla D, Iovane A, et al. Upper and lower limb strength and body posture in children with congenital hypothyroidism: an observational case-control study. Int J Environ Res Public Health. 2020;17(13):4830. Doi: https://doi.org/10.3390/ijerph17134830

Bohannon RW, Peolsson A, Massy-Westropp N, et al. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy. 2006;92(1):11-15. Doi: https://doi.org/10.1016/j.physio.2005.05.003

Lustosa LP, Diogo KG, Ribeiro-Samora GA, Kakehasi AM, Alencar MA. Concurrent validity of handgrip strength between the jamar and bulb dynamometers in women with rheumatoid arthitis. Fisioter Mov. 2020;33:e003319. Doi: https://doi.org/10.1590/1980-5918.033.AO19

Souza MA, Jesus Alves de Baptista CR, Baranauskas Benedicto MM, Pizzato TM, Mattiello-Sverzut AC. Normative data for hand grip strength in healthy children measured with a bulb dynamometer: a cross-sectional study. Physiotherapy. 2014;100(4):313-8. Doi: https://doi.org/10.1016/j.physio.2013.11.004

Trajković N, Radanović D, Madić D, Andrašić S, Cadenas-Sanchez C, Mačak D, Popović B. Normative data for handgrip strength in Serbian children measured with a bulb dynamometer. J Hand Ther. 2021;34(3):479-487. Doi: https://doi.org/10.1016/j.jht.2020.03.001

Abd-Elfattah HM, Abdelazeim FH, Elshennawy S. Physical and cognitive consequences of fatigue: A review. J Adv Res. 2015;6(3):351-8. Doi: https://doi.org/10.1016/j.jare.2015.01.011

Masuda K, Masuda T, Sadoyama T, Inaki M, Katsuta S. Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol. 1999;9(1):39-46. Doi: https://doi.org/10.1016/s1050-6411(98)00021-2

Palacios G, Pedrero-Chamizo R, Palacios N, Maroto-Sánchez B, Aznar S, González-Gross M. Biomarkers of physical activity and exercise. Nutr Hosp. 2015;31 Suppl 3:237-44. Doi: https://doi.org/10.3305/nh.2015.31.sup3.8771

Wind AE, Takken T, Helders PJ, Engelbert RH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010;169(3):281-7. Doi: https://doi.org/10.1007/s00431-009-1010-4

Ferreira ACC, Shimano AC, Mazzer N, Barbieri CH, Elui VMC, Fonseca MCR. Força de preensão palmar e pinças em indivíduos sadios entre 6 e 19 anos. Acta Ortop Bras. 2011;19(2):92-7. Doi: https://doi.org/10.1590/S1413-78522011000200006

Xu K, Mai J, He L, Yan X, Chen Y. Surface electromyography of wrist flexors and extensors in children with hemiplegic cerebral palsy. PM R. 2015;7(3):270-5. Doi: https://doi.org/10.1016/j.pmrj.2014.09.009

Brauers L, Geijen MM, Speth LA, Rameckers EA. Does intensive upper limb treatment modality Hybrid Constrained Induced Movement Therapy (H-CIMT) improve grip and pinch strength or fatigability of the affected hand? J Pediatr Rehabil Med. 2017;10(1):11-17. Doi: https://doi.org/10.3233/PRM-170406

Guedes DP, Guedes JERP. Medida da atividade física em jovens brasileiros: reprodutibilidade e validade do PAQ-C e do PAQ-A. Rev Bras Med Esporte. 2015;21(6):425-32. Doi: https://doi.org/10.1590/1517-869220152106147594

Fess EE, Moran CA. Clinical assessment recommendations. Mount Laurel: American Society of Hand Therapists; 1981.

Pizzato TM, Baptista CRJA, Souza MA, Benedicto MMB, Martinez EZ, Mattiello-Sverzut AC. Longitudinal assessment of grip strength using bulb dynamometer in Duchenne Muscular Dystrophy. Braz J Phys Ther. 2014;18(3):245-251. Doi: https://doi.org/10.1590/bjpt-rbf.2014.0031

Schall R. Estimation in generalized linear models with random effects. Biometrika. 1991;78(4):719-27. Doi: https://doi.org/10.1093/biomet/78.4.719

Gerodimos V, Karatrantou K, Psychou D, Vasilopoulou T, Zafeiridis A. Static and dynamic handgrip strength endurance: test-retest reproducibility. J Hand Surg Am. 2017;42(3):e175-e184. Doi: https://doi.org/10.1016/j.jhsa.2016.12.014

De Ste Croix MB, Deighan MA, Ratel S, Armstrong N. Age- and sex-associated differences in isokinetic knee muscle endurance between young children and adults. Appl Physiol Nutr Metab. 2009;34(4):725-31. Doi: https://doi.org/10.1139/H09-064

Schneider P, Rodrigues LA, Meyer F. Dinamometria computadorizada como metodologia de avaliação da força muscular de meninos e meninas em diferentes estágios de maturidade. Rev Paul Educ Fís. 2002;16(1):35-42. Doi: https://doi.org/10.11606/issn.2594-5904.rpef.2002.138694

Schneider P, Benetti G, Meyer F. Força muscular de atletas de voleibol de 9 a 18 anos através da dinamometria computadorizada. Rev Bras Med Esporte. 2004; 10(2):85-91. Doi: https://doi.org/10.1590/S1517-86922004000200003

Martins R, de Assumpção MS, Schivinski CI. Percepção de esforço e dispneia em pediatria: revisão das escalas de avaliação. Medicina (Ribeirão Preto). 2014;47(1):25-35. Doi: https://doi.org/10.11606/issn.2176-7262.v47i1p25-35

Robertson RJ, Goss FL, Aaron DJ, Gairola A, Kowallis RA, Liu Y, et al. One repetition maximum prediction models for children using the OMNI RPE Scale. J Strength Cond Res. 2008;22(1):196-201. Doi: https://doi.org/10.1519/JSC.0b013e31815f6283

Tarakçı E, Arman N, Barut K, Şahin S, Adroviç A, Kasapçopur Ö. Fatigue and sleep in children and adolescents with juvenile idiopathic arthritis: a cross-sectional study. Turk J Med Sci. 2019;49(1):58-65. Doi: https://doi.org/10.3906/sag-1711-167

Aadland E, Andersen LB, Anderssen SA, Resaland GK, Kval-heim OM. Accelerometer epoch setting is decisive for associations between physical activity and metabolic health in children. J Sports Sci. 2020;38(3):256-263. Doi: https://doi.org/10.1080/02640414.2019.1693320

Mokkink LB, Prinsen CAC, Bouter LM, Vet HCW, Terwee CB. The consensus-based standards for the selection of health measurement instruments (COSMIN) and how to select an outcome measurement instrument. Braz J Phys Ther. 2016;20(2):105-113. Doi: https://doi.org/10.1590/bjpt-rbf.2014.0143

Baldanzi S, Ricci G, Bottari M, Chico L, Simoncini C, Siciliano G. The proposal of a clinical protocol to assess central and peripheral fatigue in myotonic dystrophy type 1. Arch Ital Biol. 2017;155(1-2):43-53. Doi: https://doi.org/10.12871/000398292017125

Jordan B, Mehl T, Schweden TLK, Menge U, Zierz S. Assessment of physical fatigability and fatigue perception in myasthenia gravis. Muscle Nerve. 2017;55(5):657-663. Doi: https://doi.org/10.1002/mus.25386

Downloads

Published

2023-06-30

Issue

Section

Original Article

How to Cite

1.
Martins EJ, Franco CSB, Zaparoli L, Ravanelli LS, Camargo MV de, Mattiello-Sverzut AC. Handgrip fatigue test using dynamic contractions in typical children. Acta Fisiátr. [Internet]. 2023 Jun. 30 [cited 2024 Jul. 18];30(2):105-10. Available from: https://periodicos.usp.br/actafisiatrica/article/view/208192