Comparação de diferentes frequências da estimulação diafragmática elétrica transcutânea em indivíduos saudáveis: ensaio clínico randomizado cruzado
DOI:
https://doi.org/10.11606/issn.2317-0190.v29i1a186736Palavras-chave:
Estimulação Elétrica, Diafragma, Força Muscular, Voluntários SaudáveisResumo
A maioria dos estudos utilizam a estimulação diafragmática elétrica transcutânea (EDET) com frequência (F) de estímulo de 30Hz e testar diferentes frequências torna-se necessário para uma aplicação otimizada. Objetivo: Foi comparar o efeito agudo de duas frequências diferentes da EDET sobre a força muscular respiratória e endurance, ativação diafragmática, espessura muscular e mobilidade diafragmática, variáveis cardiovasculares e segurança em indivíduos saudáveis. Métodos: Estudo randomizado cruzado com 20 indivíduos saudáveis submetidos a duas intervenções: Grupo I com F= 30Hz e Grupo II com F= 80Hz. A aplicação foi nos pontos motores do diafragma, com duração do pulso de 500µs, durante 30 minutos. Foram avaliados a pressão arterial sistólica (PAS) e diastólica (PAD), frequência cardíaca (FC), força muscular respiratória pela pressão inspiratória máxima (PImax), pressão expiratória máxima (PEmax), endurance e espessura muscular em inspiração (EDI) e expiração (EDE), mobilidade e ativação diafragmática. Resultados: O GI apresentou redução significativa em comparação às condições basais para os desfechos de PAS (p= 0.04), FC (p<0.001), EDI (p= 0,02), PIF (p= 0.01), e S-Index (p= 0.03). O GII apresentou redução significativa em comparação às condições basais para FC (p<0.001) e aumento da PEmax (p<0.001). Porém, estas alterações não foram clinicamente importantes e não houve diferença entre os grupos para nenhum desfecho avaliado. Nenhuma intercorrência foi observada. Conclusão: A EDET com F-80Hz produz efeitos semelhantes a F-30Hz em indivíduos saudáveis e ambas as frequências provaram ser seguras (NCT03844711).
Downloads
Referências
Meznaric M, Cvetko E. Size and Proportions of Slow-Twitch and Fast-Twitch Muscle Fibers in Human Costal Diaphragm. Biomed Res Int. 2016;2016:5946520. Doi: https://doi.org/10.1155/2016/5946520
Miljkovic N, Lim J-Y, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Annals of rehabilitation medicine. 2015;39(2):155-62. Doi: https://doi.org/10.5535/arm.2015.39.2.155
Attwell L, Vassallo M. Response to pulmonary rehabilitation in older people with physical frailty, sarcopenia and chronic lung disease. Geriatrics (Basel). 2017;2(1):9. Doi: https://doi.org/10.3390/geriatrics2010009
Cancelliero KM, Ike D, Sampaio LMM, Santos VLA, Stirbulov R, Costa D. Estimulação diafragmática elétrica transcutânea (EDET) para fortalecimento muscular respiratório: estudo clínico controlado e randomizado. Fisioter Pesqui. 2012;19(4):303-8. Doi: https://doi.org/10.1590/S1809-29502012000400002
Ayas NT, McCool FD, Gore R, Lieberman SL, Brown R. Prevention of human diaphragm atrophy with short periods of electrical stimulation. American journal of respiratory and critical care medicine. 1999;159(6):2018-20. Doi: https://doi.org/10.1164/ajrccm.159.6.9806147
Leite MA, Osaku EF, Albert J, Costa CRLM, Garcia AM, Czapiesvski FDN, et al. Effects of neuromuscular electrical stimulation of the quadriceps and diaphragm in critically ill patients: a pilot study. Crit Care Res Pract. 2018;2018:8. Doi: https://doi.org/10.1155/2018/4298583
Forti E, Ike D, Barbalho-Moulim M, Rasera I, Jr., Costa D. Effects of chest physiotherapy on the respiratory function of postoperative gastroplasty patients. Clinics. 2009;64(7):683-9. Doi: https://doi.org/10.1590/S1807-59322009000700013
Maynard LG, Barreto AS, Santana-Filho VJ, Cerqueira Neto ML, Dias DPMS, Silva-Júnior W, M. Effects of transcutaneous electrical diaphragmatic stimulation on the cardiac autonomic balance in healthy individuals: a randomized clinical trial. Fisioter Pesqui. 2016;23(3):248-56. Doi: https://doi.org/10.1590/1809-2950/14720423032016
Martinelli B, Santos IP, Barrile SR, Iwamoto HCT, Gimenes C, Rosa DMC. Transcutaneous electrical diaphragmatic stimulation by Russian current in COPD patients. Fisioter Pesqui. 2016;23(4):345-51. Doi: https://doi.org/10.1590/1809-2950/14854823042016
Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111(10):2399-407. Doi: https://doi.org/10.1007/s00421-011-2128-4
Sbruzzi G, Schaan BD, Pimentel GL, Signori LU, Da Silva AN, Oshiro MS, et al. Effects of low frequency functional electrical stimulation with 15 and 50 Hz on muscle strength in heart failure patients. Disabil Rehabil. 2011;33(6):486-93. Doi: https://doi.org/10.3109/09638288.2010.498551
Maffiuletti NA, Roig M, Karatzanos E, Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC medicine. 2013;11:137. Doi: https://doi.org/10.1186/1741-7015-11-137
Binder-Macleod SA, McDermond LR. Changes in the force-frequency relationship of the human quadriceps femoris muscle following electrically and voluntarily induced fatigue. Phys Ther. 1992;72(2):95-104. Doi: https://doi.org/10.1093/ptj/72.2.95
Vaz MA, Baroni BM, Geremia JM, Lanferdini FJ, Mayer A, Arampatzis A, et al. Neuromuscular electrical stimulation (NMES) reduces structural and functional losses of quadriceps muscle and improves health status in patients with knee osteoarthritis. J Orthop Res. 2013;31(4):511-6. Doi: https://doi.org/10.1002/jor.22264
Rabello R, Frohlich M, Maffiuletti NA, Vaz MA. Influence of Pulse Waveform and Frequency on Evoked Torque, Stimulation Efficiency, and Discomfort in Healthy Subjects. Am J Phys Med Rehabil. 2021;100(2):161-7. Doi: https://doi.org/10.1097/PHM.0000000000001541
Santos LA, Borgi JR, Daiser JLN, Forti EMP. [Diaphragmatic effects of the transcutaneous electrical stimulation on the pulmonary function]. Rev Bras Geriatr Gerontol. 2013;16(3):495-502. Doi: http://dx.doi.org/10.1590/S1809-98232013000300008
Cancelliero-Gaiad KM, Ike D, Pantoni CB, Mendes RG, Borghi-Silva A, Costa D. Acute effects of transcutaneous electrical diaphragmatic stimulation on respiratory pattern in COPD patients: cross-sectional and comparative clinical trial. Braz J Phys Ther. 2013;17(6):547-55. Doi: https://doi.org/10.1590/S1413-35552012005000121
Sarwal A, Walker FO, Cartwright MS. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve. 2013;47(3):319-29. Doi: https://doi.org/10.1002/mus.23671
Caruso P, Albuquerque AL, Santana PV, Cardenas LZ, Ferreira JG, Prina E, et al. Diagnostic methods to assess inspiratory and expiratory muscle strength. J Bras Pneumol. 2015;41(2):110-23. Doi: https://doi.org/10.1590/S1806-37132015000004474
Culver BH, Graham BL, Coates AL, Wanger J, Berry CE, Clarke PK, et al. Recommendations for a Standardized Pulmonary Function Report. An Official American Thoracic Society Technical Statement. Am J Respir Crit Care Med. 2017;196(11):1463-1472. Doi: https://doi.org/10.1164/rccm.201710-1981ST
Neder JA, Andreoni S, Castelo-Filho A, Nery LE. Reference values for lung function tests. I. Static volumes. Braz J Med Biol Res. 1999;32(6):703-17. Doi: http://dx.doi.org/10.1590/S0100-879X1999000600006
Spiesshoefer J, Herkenrath S, Henke C, Langenbruch L, Schneppe M, Randerath W, et al. Evaluation of Respiratory Muscle Strength and Diaphragm Ultrasound: Normative Values, Theoretical Considerations, and Practical Recommendations. Respiration. 2020;99(5):369-81. Doi: https://doi.org/10.1159/000506016
Cahalin LP, Arena R. Novel methods of inspiratory muscle training via the Test of Incremental Respiratory Endurance (TIRE). Exerc Sport Sci Rev. 2015;43(2):84-92. Doi: https://doi.org/10.1249/JES.0000000000000042
Lin L, Guan L, Wu W, Chen R. Correlation of surface respiratory electromyography with esophageal diaphragm electromyography. Respir Physiol Neurobiol. 2019;259:45-52. Doi: https://doi.org/10.1016/j.resp.2018.07.004
Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Lawrence Erlbaum; 1988.
Rosenthal JA. Qualitative descriptors of strength of association and effect size. J Soc Serv Res. 1996;21(4):37-59. Doi: https://doi.org/10.1300/J079v21n04_02
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the american heart association. Circulation. 2019;139(10):e56-e528. Doi: https://doi.org/10.1161/cir.0000000000000659
Lam E, Greenhough E, Nazari P, White MJ, Bruce RM. Muscle metaboreflex activation increases ventilation and heart rate during dynamic exercise in humans. Exp Physiol. 2019;104(10):1472-81. Doi: https://doi.org/10.1113/EP087726
Gademan MG, Sun Y, Han L, Valk VJ, Schalij MJ, van Exel HJ, et al. Rehabilitation: Periodic somatosensory stimulation increases arterial baroreflex sensitivity in chronic heart failure patients. Int J Cardiol. 2011;152(2):237-41. Doi: https://doi.org/10.1016/j.ijcard.2010.07.022
Schoser B, Fong E, Geberhiwot T, Hughes D, Kissel JT, Madathil SC, et al. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: a comprehensive review of the literature. Orphanet J Rare Dis. 2017;12(1):52. Doi: https://doi.org/10.1186/s13023-017-0598-0
Gray-Donald K, Gibbons L, Shapiro SH, Macklem PT, Martin JG. Nutritional status and mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;153(3):961-6. Doi: https://doi.org/10.1164/ajrccm.153.3.8630580
Moore AJ, Soler RS, Cetti EJ, Amanda Sathyapala S, Hopkinson NS, Roughton M, et al. Sniff nasal inspiratory pressure versus IC/TLC ratio as predictors of mortality in COPD. Respir Med. 2010;104(9):1319-25. Doi: https://doi.org/10.1016/j.rmed.2010.03.001
Frankenstein L, Meyer FJ, Sigg C, Nelles M, Schellberg D, Remppis A, et al. Is serial determination of inspiratory muscle strength a useful prognostic marker in chronic heart failure? Eur J Cardiovasc Prev Rehabil. 2008;15(2):156-61. Doi: https://doi.org/10.1097/HJR.0b013e3282f0d6ea
Supinski GS, Westgate P, Callahan LA. Correlation of maximal inspiratory pressure to transdiaphragmatic twitch pressure in intensive care unit patients. Crit Care. 2016;20:77. Doi: https://doi.org/10.1186/s13054-016-1247-z
Nohama P, Jorge RF, Valenga MH. [Effects of transcutaneous diaphragmatic synchronized pacing in patients with chronic obstructive pulmonary disease (COPD)]. Rev Bras Eng Biomed. 2012;28(2):103-15. Doi: http://dx.doi.org/10.4322/rbeb.2012.018
Costa D, Cancelliero KM, Campos GE, Salvini TF, Silva CA. Changes in types of muscle fibers induced by transcutaneous electrical stimulation of the diaphragm of rats. Braz J Med Biol Res. 2008;41(9):809-11. Doi: http://doi.org/10.1590/s0100-879x2008000900011
Cancelliero KM, Costa D, Silva CA. Transcutaneous electrical stimulation of the diaphragm improves the metabolic conditions of respiratory muscles in rats. Rev Bras Fisioter. 2006;10(1):59-65. Doi: https://doi.org/10.1590/S1413-35552006000100008
Henry CC, Martin KS, Ward BB, Handsfield GG, Peirce SM, Blemker SS. Spatial and age-related changes in the microstructure of dystrophic and healthy diaphragms. PloS One. 2017;12(9):e0183853. Doi: https://doi.org/10.1371/journal.pone.0183853
Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110(2):223-34. Doi: https://doi.org/10.1007/s00421-010-1502-y
Fiel JNA, Lima JS, Dias JM, Neves LMT. Avaliação do risco de quedas e sarcopenia em idosos com doença pulmonar obstrutiva crônica atendidos em um hospital universitário de Belém, Estado do Pará, Brasil. Rev Pan-Amaz Saude. 2016;7(4):41-5. Doi: http://dx.doi.org/10.5123/s2176-62232016000400005
Lee GD, Kim HC, Yoo JW, Lee SJ, Cho YJ, Bae K, et al. Computed tomography confirms a reduction in diaphragm thickness in mechanically ventilated patients. J Crit Care. 2016;33:47-50. Doi: https://doi.org/10.1016/j.jcrc.2016.02.013
Kim WY, Suh HJ, Hong SB, Koh Y, Lim CM. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011;39(12):2627-30. Doi: https://doi.org/10.1097/CCM.0b013e3182266408
Boon AJ, Harper CJ, Ghahfarokhi LS, Strommen JA, Watson JC, Sorenson EJ. Two-dimensional ultrasound imaging of the diaphragm: quantitative values in normal subjects. Muscle Nerve. 2013;47(6):884-9. Doi: https://doi.org/10.1002/mus.23702
Carrillo-Esper R, Perez-Calatayud AA, Arch-Tirado E, Diaz-Carrillo MA, Garrido-Aguirre E, Tapia-Velazco R, et al. Standardization of Sonographic Diaphragm Thickness Evaluations in Healthy Volunteers. Respir Care. 2016;61(7):920-4. Doi: https://doi.org/10.4187/respcare.03999
Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39(5):801-10. Doi: https://doi.org/10.1007/s00134-013-2823-1
Wu W, Guan L, Li X, Lin L, Guo B, Yang Y, et al. Correlation and compatibility between surface respiratory electromyography and transesophageal diaphragmatic electromyography measurements during treadmill exercise in stable patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:3273-80. Doi: https://doi.org/10.2147/COPD.S148980
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Acta Fisiátrica

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.