Treino de marcha robótica em pacientes com paralisia cerebral: uma análise retrospectiva
DOI:
https://doi.org/10.11606/issn.2317-0190.v30i2a202428Palavras-chave:
Paralisia Cerebral, Modalidades de Fisioterapia, Marcha, Robótica, ReabilitaçãoResumo
Objetivo: Verificar retrospectivamente a eficácia do treino de marcha com robótica (Lokomat®) em pacientes com Paralisia Cerebral (PC) níveis II, III e IV da Medida da Função Motora Grossa (GMFCS). Método: Análise retrospectiva descritiva do prontuário de 69 pacientes com PC que realizaram o protocolo da Lokomat®. Os resultados do teste de caminhada de 6 minutos (TC6M), teste de caminhada de 10 metros (TC10M), Timed Up and Go (TUG) e da Avaliação da Função Motora Grossa (GMFM) foram realizados e analisados pré e pós protocolo. Resultados: Foi observada uma melhora no GMFM para pacientes de todos os níveis do GMFCS. Pacientes GMFCS nível III apresentaram melhora significativa do TC6M (p= 0,01) e pacientes GMFCS nível IV apresentaram melhora significativa da dimensão B do GMFM (p= 0,03). Todos os testes mostraram melhoras significativas quando comparados aos resultados antes da aplicação do protocolo. Conclusão: O estudo sugere que todos os pacientes com diagnóstico de PC se beneficiaram do treino de marcha com uso da Lokomat® dentro de seu quadro motor esperado.
Downloads
Referências
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14.
Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509-19. Doi: https://doi.org/10.1111/dmcn.12080
Barbosa RMP, Linhares TG, Kunzler B, Farias NC. Métodos de avaliação na criança com paralisia cerebral. Rev Bras Multidisciplinar. 2016;19(1): 83-86. Doi: https://doi.org/10.25061/2527-2675/ReBraM/2016.v19i1.373
Andrade MB, Vieira SS, Dupas G. Paralisia cerebral: estudo sobre o enfrentamento familiar. REME Rev Min Enferm - REME. 2011;15(1):86-96.
Hilderley AJ, Fehlings D, Lee GW, Wright FV. Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: design and methods of a two group randomized controlled crossover trial. Springerplus. 2016;5(1):1886. Doi: https://doi.org/10.1186/s40064-016-3535-0
Usuba K, Oddson B, Gauthier A, Young NL. Changes in gross motor function and health-related quality of life in adults with cerebral palsy: an 8-year follow-up study. Arch Phys Med Rehabil. 2014;95(11):2071-2077.e1. Doi: https://doi.org/10.1016/j.apmr.2014.05.018
Nooijen CF, Slaman J, Stam HJ, Roebroeck ME, Berg-Emons RJ; Learn2Move Research Group. Inactive and sedentary lifestyles amongst ambulatory adolescents and young adults with cerebral palsy. J Neuroeng Rehabil. 2014;11:49. Doi: https://doi.org/10.1186/1743-0003-11-49
Jahnsen R, Villien L, Egeland T, Stanghelle JK, Holm I. Locomotion skills in adults with cerebral palsy. Clin Rehabil. 2004;18(3):309-16. Doi: https://doi.org/10.1191/0269215504cr735oa
Drużbicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, et al. Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy. J Rehabil Med. 2013;45(4):358-63. Doi: https://doi.org/10.2340/16501977-1114
Meyer-Heim A, Ammann-Reiffer C, Schmartz A, Schäfer J, Sennhauser FH, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009;94(8):615-20. Doi: https://doi.org/10.1136/adc.2008
De Luca R, Bonanno M, Settimo C, Muratore R, Calabrò RS. Improvement Of Gait After Robotic-Assisted Training In Children With Cerebral Palsy: Are We Heading In The Right Direction? Med Sci (Basel). 2022;10(4):59. Doi: 10.3390/medsci10040059
Cherng RJ, Liu CF, Lau TW, Hong RB. Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am J Phys Med Rehabil. 2007;86(7):548-55. Doi: https://doi.org/10.1097/PHM.0b013e31806dc302
Cherni Y, Ziane C. A Narrative Review on Robotic-Assisted Gait Training in Children and Adolescents with Cerebral Palsy: Training Parameters, Choice of Settings, and Perspectives. Disabilities. 2022;2(2):293-303. Doi: https://doi.org/10.3390/disabilities2020021
Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):2-8. Doi: https://doi.org/10.1109/TNSRE.2008.2008280
Schroeder AS, Homburg M, Warken B, Auffermann H, Koerte I, Berweck S, et al. Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robotenhanced repetitive treadmill therapy. Eur J Paediatr Neurol. 2014;18(4):502-10. Doi: https://doi.org/10.1016/j.ejpn.2014.04.012
Cherni Y, Ballaz L, Lemaire J, Begon M. Effects of robot-assisted gait training on walking abilities of children with cerebral palsy. Neurophysiologie Clinique. 2019;49(6):421. Doi: https://doi.org/10.1016/j.neucli.2019.10.041
Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Ga-luppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-23. Doi: https://doi.org/10.1111/j.1469-8749.1997.tb07414.x
Russell DJ, Wright M, Rosenbaum PL, Avery LM. Gross Motor Function Measure (GMFM-66 and GMFM-88) User’s Manual. 2nd ed. London: Mac Keith; 2013.
Klobucká S, Klobucký R, Kollár B. Effect of robot-assisted gait training on motor functions in adolescent and young adult patients with bilateral spastic cerebral palsy: A randomized controlled trial. NeuroRehabilitation. 2020;47(4):495-508. Doi: https://doi.org/10.3233/NRE-203102
Bolster EA, Dallmeijer AJ, de Wolf GS, Versteegt M, Schie PE. Reliability and Construct Validity of the 6-Minute Racerunner Test in Children and Youth with Cerebral Palsy, GMFCS Levels III and IV. Phys Occup Ther Pediatr. 2017;37(2):210-221. Doi: https://doi.org/10.1080/01942638.2016.1185502
Fitzgerald D, Hickey C, Delahunt E, Walsh M, OʼBrien T. Six-Minute Walk Test in Children With Spastic Cerebral Palsy and Children Developing Typically. Pediatr Phys Ther. 2016;28(2):192-9. Doi: https://doi.org/10.1097/PEP.0000000000000224
Thompson P, Beath T, Bell J, Jacobson G, Phair T, Salbach NM, et al. Test-retest reliability of the 10-metre fast walk test and 6-minute walk test in ambulatory school-aged children with cerebral palsy. Dev Med Child Neurol. 2008;50(5):370-6. Doi: https://doi.org/10.1111/j.1469-8749.2008.02048.x
Hassani S, Krzak JJ, Johnson B, Flanagan A, Gorton G 3rd, Bagley A, et al. One-Minute Walk and modified Timed Up and Go tests in children with cerebral palsy: performance and minimum clinically important differences. Dev Med Child Neurol. 2014;56(5):482-9. Doi: https://doi.org/10.1111/dmcn.12325
Chrysagis N, Skordilis EK, Koutsouki D. Validity and clinical utility of functional assessments in children with cerebral palsy. Arch Phys Med Rehabil. 2014;95(2):369-74. Doi: https://doi.org/10.1016/j.apmr.2013.10.025
Oeffinger D, Bagley A, Rogers S, Gorton G, Kryscio R, Abel M, et al. Outcome tools used for ambulatory children with cerebral palsy: responsiveness and minimum clinically important differences. Dev Med Child Neurol. 2008;50(12):918-25. Doi: https://doi.org/10.1111/j.1469-8749.2008.03150.x
Chiarello LA, Palisano RJ, Maggs JM, Orlin MN, Almasri N, Kang LJ, et al. Family priorities for activity and participation of children and youth with cerebral palsy. Phys Ther. 2010;90(9):1254-64. Doi: https://doi.org/10.2522/ptj.20090388
Hutton JL, Pharoah PO. Effects of cognitive, motor, and sensory disabilities on survival in cerebral palsy. Arch Dis Child. 2002;86(2):84-9. Doi: https://doi.org/10.1136/adc.86.2.84
Dodd KJ, Foley S. Partial body-weight-supported treadmill training can improve walking in children with cerebral palsy: a clinical controlled trial. Dev Med Child Neurol. 2007;49(2):101-5. Doi: https://doi.org/10.1111/j.1469-8749.2007.00101.x
Beretta E, Storm FA, Strazzer S, Frascarelli F, Petrarca M, Colazza A, et al. Effect of robot-assisted gait training in a large population of children with motor impairment due to cerebral palsy or acquired brain injury. Arch Phys Med Rehabil. 2020;101(1):106-112. Doi: https://doi.org/10.1016/j.apmr.2019.08.479
Drużbicki M, Rusek W, Szczepanik M, Dudek J, Snela S. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng Biomech. 2010;12(3):53-8.
Aurich-Schuler T, Warken B, Graser JV, Ulrich T, Borggraefe I, Heinen F, Meyer-Heim A, van Hedel HJ, Schroeder AS. Practical recommendations for robot-assisted treadmill therapy (Lokomat) in children with cerebral palsy: indications, goal setting, and clinical implementation within the WHO-ICF framework. Neuropediatrics. 2015;46(4):248-60. Doi: https://doi.org/10.1055/s-0035-1550150
Borggraefe I, Kiwull L, Schaefer JS, Koerte I, Blaschek A, Meyer-Heim A, Heinen F. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med. 2010;46(2):125-31.
van Hedel HJ, Meyer-Heim A, Rüsch-Bohtz C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev Neurorehabil. 2016;19(6):410-415. Doi: https://doi.org/10.3109/17518423.2015.1017661
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Acta Fisiátrica

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.