Atividade antimicrobiana de selantes sobre fossas e fissuras: revisão sistemática
DOI:
https://doi.org/10.11606/issn.2357-8041.clrd.2022.192671Palavras-chave:
Selantes sobre fossas e fissuras, Atividade antimicrobiana, Revisão sistemática, Materiais dentários, Método preventivoResumo
Objetivo: Este estudo é uma revisão sistemática da literatura sobre selantes modificados com materiais para promover atividade antimicrobiana para responder à questão “Qual é o efeito da incorporação de materiais que promovem atividade antimicrobiana em selantes sobre fossas e fissuras?” Materiais e métodos: Dados foram coletados a partir de questões sobre o material incorporado, sua concentração, propósito de incorporação, análises e conclusões obtidas. As bases de dados Cochrane Library, LILLACS, ScienceDirect e PubMed foram pesquisadas com os termos “SELANTE”, “ANTIMCROBIAL” e “ANTIBACTERIAL”. Os artigos foram selecionados em duas etapas. Critérios de inclusão foram aplicados pela avaliação de títulos e resumos e critérios de exclusão, pela completa leitura desses artigos. A ferramenta adaptada do Joanna Briggs Institute foi usada para analisar o risco de viés. Resultados: Dada a heterogeneidade dos dados encontrados, foi impossível realizar uma meta-análise. Obtivemos 1389 referências, das quais 11 foram incluídas nessa revisão. A análise dos artigos mostrou que selantes modificados podem apresentar atividade antimicrobiana e alteração de suas outras propriedades. Conclusão: Selantes alterados sobre fossas e fissuras mostram atividade antimicrobiana e propriedades físico-químicas e mecânicas alteradas.
Downloads
Referências
Hesaraki S, Karimi M, Nezafati N. The synergistic effects of SrF2 nanoparticles, YSZ nanoparticles, and poly-ε-L-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. Mater Sci Eng C. 2020;109:110592. Doi: https://doi.org/10.1016/j.msec.2019.110592.
Moreira KMS, Kantovitz KR, Aguiar JPD, Borges AFS, Pascon FM, Puppin-Rontani RM. Impact of the intermediary layer on sealant retention: a randomized 24-month clinical trial. Clin Oral Investig. 2017;21(5):1435-43. Doi: https://doi.org/10.1007/s00784-016-1890-4.
Kantovitz KR, Pascon FM, Nociti FH Jr, Tabchoury CPM, Puppin-Rontani RM. Inhibition of enamel mineral loss by fissure sealant: An in situ study. J Dent. 2013;41(1):42-50. Doi: http://doi.org/10.1016/j.jdent.2012.09.015
Ibrahim MS, Ibrahim AS, Balhaddad AA, Weir MD, Lin NJ, Tay FR, et al. A novel dental sealant containing dimethylaminohexadecyl methacrylate suppresses the cariogenic pathogenicity of Streptococcus mutans biofilms. Int J Mol Sci. 2019;20(14):3491. Doi: https://doi.org/10.3390/ijms20143491.
Yu F, Yu H, Lin P, Dong Y, Zhang L, Sun X, et al. Effect of an antibacterial monomer on the antibacterial activity of a pit-and-fissure sealant. PLoS One. 2016;11(9):e0162281. Doi: https://doi.org/10.1371/journal.pone.0162281.
Papageorgiou SN, Dimitraki D, Kotsanos N, Bekes K, van Waes H. Performance of pit and fissure sealants according to tooth characteristics: A systematic review and meta-analysis. J Dent. 2017;6:8-17. Doi: https://doi.org/10.1016/j.jdent.2017.08.004.
Borges BCD, Souza-Júnior EJ, Catelan A, Lovadino JR, Santos PH, Paulillo LAMS, et al. Influence of extended light exposure time on the degree of conversion and plasticization of materials used as pit and fissure sealants. J Investig Clin Dent. 2010;1(2):151-5. Doi: https://doi.org/10.1111/j.2041-1626.2010.00015.x.
Kloukos D, Pandis N, Eliades T. In vivo bisphenol-A release from dental pit and fissure sealants: A systematic review. J Dent. 2013;41(8):659-67. Doi: http://doi.org/10.1016/j.jdent.2013.04.012
Paris S, Lausch J, Selje T, Dörfer CE, Meyer-Lueckel H. Comparison of sealant and infiltrant penetration into pit and fissure caries lesions in vitro. J Dent. 2014;42(4):432-8. Doi: https://doi.org/10.1016/j.jdent.2014.01.006.
Borges BCD, Bezerra GVG, Mesquita JA, Pereira MR, Aguiar FHB, Santos AJS, et al. Effect of irradiation times on the polymerization depth of contemporary fissure sealants with different opacities. Braz Oral Res. 2011;25(2):135-42. Doi: https://doi.org/10.1590/S1806-83242011000200007.
Hamilton MF, Otte AD, Gregory RL, Pinal R, Ferreira-Zandoná A, Bottino MC. Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J Biomed Mater Res B Appl Biomater. 2015;103(8):1560-8. Doi: https://doi.org/10.1002/jbm.b.33342.
Fiorati-Aguiar SM, Lucisano MP, Silva LAB, Silva RAB, Spadaro ACC, Borsatto MC, et al. Mechanical, chemical and antimicrobial properties of a bisphenol A-free pit-and-fissure sealant. Am J Dent. 2018;31(6):279-84.
Shanmugaavel AK, Asokan S, John JB, Priya PG, Devi JG. Effect of one percent chlorhexidine addition on the antibacterial activity and mechanical properties of sealants: An in vitro study. Int J Clin Pediatr Dent. 2015;8(3):196-201. Doi: https://doi.org/10.5005/jp-journals-10005-1312.
Garcia IM, Rodrigues SB, Souza Balbinot G, Visioli F, Leitune VCB, Collares FM. Quaternary ammonium compound as antimicrobial agent in resin-based sealants. Clin Oral Investig. 2020;24(2):777-84. Doi: https://doi.org/10.1007/s00784-019-02971-4.
Cocco AR, Cuevas-Suárez CE, Liu Y, Lund RG, Piva E, Hwang G. Anti-biofilm activity of a novel pit and fissure self-adhesive sealant modified with metallic monomers. Biofouling. 2020;36(3):245-55. Doi: https://doi.org/10.1080/08927014.2020.1748603.
Shinonaga Y, Arita K, Nishimura T, Chiu SY, Chiu HH, Abe Y, et al. Effects of porous-hydroxyapatite incorporated into glass-ionomer sealants. Dent Mater J. 2015;34(2):196-202. Doi: https://doi.org/10.4012/dmj.2014-195.
Rajabnia R, Ghasempour M, Gharekhani S, Gholamhoseinnia S, Soroorhomayoon S. Anti-Streptococcus mutans property of a chitosan: Containing resin sealant. J Int Soc Prev Community Dent. 2016;6(1):49-53. Doi: https://doi.org/10.4103/2231-0762.175405.
Garcia IM, Rodrigues SB, Leitune VCB, Collares FM. Antibacterial, chemical and physical properties of sealants with polyhexamethylene guanidine hydrochloride. Braz Oral Res. 2019;33:1-9. Doi: https://doi.org/10.1590/1807-3107bor-2019.vol33.0019.
Monteiro JC, Stürmer M, Garcia IM, Melo MA, Sauro S, Leitune VCB, et al. Dental sealant empowered by 1,3,5-Tri acryloyl hexahydro-1,3,5-triazine and α- tricalcium phosphate for anti-caries application. Polymers (Basel). 2020;12(4):895. Doi: https://doi.org/10.3390/polym12040895.
Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L. Systematic reviews of effectiveness. In: Aromataris E, Munn Z, editors. JBI manual for evidence synthesis [Internet]. The Joanna Briggs Institute; 2020 [cited 2022 Feb 1]. Available from: https://synthesismanual.jbi.global/.
Mahapoka E, Arirachakaran P, Watthanaphanit A, Rujiravanit R, Poolthong S. Chitosan whiskers from shrimp shells incorporated into dimethacrylatebased dental resin sealant. Dent Mater J. 2012;31(2):273-9. Doi: https://doi.org/10.4012/dmj.2011-071.
Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016;85:467-75. Doi: http://doi.org/10.1016/j.ijbiomac.2016.01.022.
Nikolaidis A, Vouzara T, Koulaouzidou E. Pit and fissure nanocomposite sealants reinforced with organically modified montmorillonite: A study of their mechanical properties, surface roughness and color stability. Dent Mater J. 2020;39(5):773-83. Doi: https://doi.org/10.4012/dmj.2019-214.
Hasan AMHR, Sidhu SK, Nicholson JW. Fluoride release and uptake in enhanced bioactivity glass ionomer cement (“glass carbomerTM”) compared with conventional and resin-modified glass ionomer cements. J Appl Oral Sci. 2019;27:1-6.
Okuyama K, Matsuda Y, Yamamoto H, Tamaki Y, Saito T, Hayashi M, et al. Fluorine distribution from fluoride-releasing luting materials into human dentin. Nucl Instrum Methods Phys Res B. 2019;456:16-20. Doi: https://doi.org/10.1016/j.nimb.2019.06.047
Yasuhiro M, Katsushi O, Hiroko Y, Hisanori K, Masashi K, Takahiro S, et al. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling. Nucl Instrum Methods Phys Res B. 2015;348:156–9. Doi: http://doi.org/10.1016/j.nimb.2015.01.062.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Izabela Ferreira, Thaisa Theodoro de Oliveira, Andréa Cândido dos Reis
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Solicita-se aos autores enviar, junto com a carta aos Editores, um termo de responsabilidade. Dessa forma, os trabalhos submetidos à apreciação para publicação deverão ser acompanhados de documento de transferência de direitos autorais, contendo a assinatura de cada um dos autores, cujo modelo está a seguir apresentado:
Eu/Nós, _________________________, autor(es) do trabalho intitulado _______________, submetido agora à apreciação da Clinical and Laboratorial Research in Dentistry, concordo(amos) que os autores retém o direitos autorais e garantem a revista o direito da primeira publicação, sendo o trabalho simultaneamente autorizado sob a Creative Commons Attribution License, que permite a outros compartilhar o artigo com reconhecimento da autoria do trabalho e publicação inicial nesta Revista. Aos autores será possibilitada a distribuição em separado da versão publicada do artigo, arranjos contratuais adicionais para a distribuição não-exclusiva da versão publicada (por exemplo, publicá-la em um repositório institucional ou publicação em livro), com o reconhecimento de sua publicação inicial nesta revista. Aos autores será permitido e encorajado publicar seu trabalho on-line (por exemplo, em repositórios institucionais ou em seu site) antes e durante o processo de envio, pois pode levar a intercâmbios produtivos, bem como a maior citação do trabalho publicado. (Veja The Effect of Open Access).
Data: ____/____/____Assinatura(s): _______________