Structural preliminary design for architecture aided by artificial inteligence
DOI:
https://doi.org/10.11606/gtp.v17i3.185781Keywords:
Preliminary design, structures, machine learning, surrogate modelAbstract
Architectural structural preliminary design and structural members pre-sizing are a frequent topic in the literature associated with building design; since several decades ago. In the past, pre-sizing was carried out analogically with the aid of simplified mathematical expressions or abacuses, which often causes rework due to its imprecision and its laborious manual method features. These processes have been changing over time, and more recently, digital technologies have provided opportunities for sophistication, offering speed and precision in the responses of the structural element’s thicknesses. Parametric modeling, finite elements structural simulation, structural design standard algorithmic verification and artificial intelligence can offer a great contribution to the preliminary structural design and pre-dimensioning process. In this article it is proposed a demonstration of a framework using a database with a structural system solution space and its processing through a surrogate model using non-linear regression through artificial intelligence. Clustering technique using the k-means algorithm and supervised trained machine learning with were used to obtain the structural system generalized model that offers the structural members’ thickness from the input of the spans, loads and strengths of the material. The generalized model obtained was subsequently successfully validated by the finite element method and the structural design code algorithmic verification, exhibiting a satisfactory processing speed on response, meeting with the agility that the early stages architectural design process demands and the accessibility that this model can deliver to the performance-based design paradigm.
Downloads
References
ADELI, H.; YEH, C. Explanation-based machine learning in engineering design. Engineering Applications of Artificial Intelligence. v. 3, p.127-137, 1990.
ALLEN, E.; IANO, J. The architect’s studio companion: rules of thumb for preliminary design. 6th Ed. New Jersey: John Wiley and Sons, 2017. 410 p.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: projeto de estruturas de concreto: procedimento. Rio de Janeiro, 2014.
AMEZQUITA-SANCHEZ, J. P.; VALTIERRA-RODRIGUEZ, M.; ADELI, H. Machine learning in structural engineering. Scientia Iranica A. v. 27(6), p.2645-2656, 2020.
http://dx.doi.org/10.24200/sci.2020.22091
BARANAUSKAS, M. C. C.; ROCHA, H. V.; MARTINS, M. C.; D’ABREU, J. V. V. Uma taxonomia para ambientes de aprendizado baseados no computador. In: VALENTE, J. A., Liv. (Org.). O computador na sociedade do conhecimento. 1ª Ed. Campinas: UNICAMP/NIED, 1999, p. 49-68
BRITO, B. L.; SILVA, F. T.; "ESTUDO PARAMÉTRICO DE SISTEMAS DE PISO BIDIRECIONAL E UNIDIRECIONAL MODULADOS EM CONCRETO ARMADO", p. 142-155. In: Anais do VII Encontro de Tecnologia de Informação e Comunicação na Construção - TIC2015 [ANTAC e Blucher Engineering Proceedings]. Porto Alegre: ANTAC; São Paulo: Blucher, 2015. DOI: https://doi.org/10.5151/engpro-tic2015-013
BROWN, N. C.; JUSIEGA, V.; MUELLER, C. T. Implementing data-driven parametric building design with a flexible toolbox. Automation in Construction. v. 118, 103252, 2020. https://doi.org/10.1016/j.autcon.2020.103252
BRUNO, F. Tecnologias cognitivas e espaços do pensamento. In: FRANÇA, Vera; WEBER, Maria Helena; PAIVA, Raquel; SOVIK, Liv. (Org.). Livro da XI Compós 2002: Estudos de Comunicação. 1ª Ed. Porto Alegre: Sulina, 2003, v. 1, p. 193-217.
CHING, F.D.K.; ONOUYE, B.S.; ZUBERBUHLER, D. Sistemas estruturais ilustrados: padrões, sistemas e projeto. 2ª Ed. Porto Alegre: Bookman, 2015. 352 p.
CORKILL, P. A. Preliminary Structural Design Charts for Architects. Architectural Science Review. v. 12, n. 1, p. 15-20, 1969.
DRESCH, A.; LACERDA, D. P.; ANTUNES JÚNIOR, J. A. V. Design Science Research: Método de pesquisa para avanço da ciência e tecnologia. Porto alegre: Bookman, 2015. 181 p.ENGEL, H. Sistemas Estruturais. 1ª Ed. Barcelona: Gustavo Gili, 2001. 352 p.
ENGEL, H. Sistemas Estruturais. 1ª Ed. Barcelona: Gustavo Gili, 2001. 352 p.
GUDIPATI, V. K.; CHA, E. J. Surrogate modeling for structural response prediction of a building class. Structural Safety. v. 89, 102041, 2021. https://doi.org/10.1016/j.strusafe.2020.102041
HOLZER, D. Optioneering in Collaborative Design Practice. International Journal of Architectural Computing. v. 8, n. 2, p.165-182, 2010. https://doi.org/10.1260/1478-0771.8.2.165.
KOLAREVIC, B. (Ed.). Architecture in the digital age: design and manufacturing. New York: Taylor & Francis, 2003. 314 p.
LE, V.; CARACOGLIA, L.; A neural network surrogate model for the performance assessment of a vertical structure subjected to non-stationary, tornadic wind loads. Computers and Structures. v. 231, 106208, 2020. https://doi.org/10.1016/j.compstruc.2020.106208
MACDONALD, A. J. Structure and Architecture. 2nd Ed. Oxford: Architectural Press, 2001. 164 p.
MACHAIRAS, V.; TSANGRASSOULIS, A.; AXARLI, K. Algorithms for optimization of building design: A review. Renewable and Sustainable Energy Reviews. v. 31, p.101–112, 2014. http://dx.doi.org/10.1016/j.rser.2013.11.036
MITCHELL, W. J. The theoretical foundation of computer-aided architectural design. Environment and Planning B. v.2, p.127-150, 1975. https://doi.org/10.1068/b020127
MOUSSAVI, F. The function of Form. 1st Ed. Barcelona: ACTAR, 2009. 520 p.
MÜLLER, A. C.; GUIDO, S. Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly, 2017, 394p.
NGUYEN, L. C.; NGUYEN-XUAN, H. Deep learning for computational structural optimization. ISA Transactions. v. 103, pp.177–191, 2020. https://doi.org/10.1016/j.isatra.2020.03.033.
OXMAN, R. Digital architecture as a challenge for design pedagogy: theory, knowledge, models and medium. Design Studies. v. 29, pp. 99-120, 2008.
http://dx.doi.org/doi:10.1016/j.destud.2007.12.003
OXMAN, R. E.; OXMAN, R. M. New structuralism: design, engineering and Architectural technologies. Architectural design: The new structuralism: Design, engineering and architectural technologies. pp. 14-23, 2010.
OXMAN, R. Informed tectonics in material-based design. Design Studies. v. 33, pp. 427-455, 2012. http://dx.doi.org/10.1016/j.destud.2012.05.005
OXMAN, R. Thinking difference: Theories and models of parametric design thinking. Design Studies. v. 52, p. 4-39, 2017. http://dx.doi.org/10.1016/j.destud.2017.06.001
PRIMO, A. F. T. Interação Mediada por Computador: a comunicação e a educação a distância segundo uma perspectiva sistêmico-relacional. 2003. Tese (Doutorado em Informática na Educação) – Programa de Pós-graduação em Informática na Educação da Universidade Federal do Rio Grande do Sul, Porto Alegre, 2003.
REBELLO, Y. C. P. Bases para o projeto estrutural na arquitetura. 1ª Ed. São Paulo: Zigurate Editora, 2007. 288 p.
SARAMAGO, R. C. P. Ensino de estruturas nas escolas de arquitetura do Brasil. 2011. Dissertação (Mestrado em Arquitetura, Urbanismo e Tecnologia) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2011. DOI: https://doi.org/10.11606/D.18.2011.tde-31052011-101630
SIAM, A.; EZZELDIN, M.; EL-DAKHAKHNI, W. Machine learning algorithms for structural performance classifications and predictions: Application to reinforced masonry shear walls. Structures. v. 22, p.252–265, 2019. https://doi.org/10.1016/j.istruc.2019.06.017.
SILVA, F. T. Modelo paramétrico de pórticos em concreto armado com dimensionamento otimizado: uma proposta de ferramenta de projeto para as fases iniciais de concepção estrutural. Ambiente Construído, v. 18, n. 1, p. 193-210, 2018. http://dx.doi.org/10.1590/s1678-86212018000100216
SILVA, F. T. Experiências com ferramentas digitais no ensino de estruturas arquitetônicas. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 12, p. e0210xx, 2021. DOI: http://dx.doi.org/10.20396/parc.v12i00.8661548
SUN, H.; BURTON, H. V.; HUANG, H. Machine learning applications for building structural design and performance assessment: State - of - the - art review. Journal of Building Engineering. v. 33, 2021, 101816. https://doi.org/10.1016/j.jobe.2020.101816.
TSERANIDIS, S.; BROWN, N. C.; MUELLER, C. T. Data-driven approximation algorithms for rapid performance evaluation and optimization of civil structures. Automation in Construction. v. 72, p.279–293, 2016. http://dx.doi.org/10.1016/j.autcon.2016.02.002
ZHENG, H.; MOOSAVI, V.; AKBARZADEH, M. Machine learning assisted evaluations in structural design and construction. Automation in Construction. v. 119, 103346, 2020. https://doi.org/10.1016/j.autcon.2020.103346.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Felipe Tavares da Silva

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Notice
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with the article simultaneously licensed under the Creative Commons Attribution License BY NC ND, which allows the sharing of article with acknowledgment of authorship and initial publication in this journal.
- Authors are authorized to take additional contracts separately, for non-exclusive distribution of version of the article published in this journal (e.g. publish in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to publish and distribute their research work online (e.g. in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes, as well as increase the impact and the citation of published article (See O Efeito do Acesso Livre).