Nivel de interoperabilidad para el análisis estructural de puentes basado en la interpretación de datos IFC
DOI:
https://doi.org/10.11606/gtp.v19i3.227401Palabras clave:
BIM, Puentes, Infraestructuras, Intercambio de datosResumen
La importación de datos IFC (Industry Foundation Classes) de modelos estructurales de puentes a software de análisis estructural es una tarea habitual en el flujo de trabajo BIM (Building Information Modeling). Sin embargo, algunos programas informáticos siguen sin importar datos IFC en la versión de ampliación que incluye modelos de puentes, lo que puede provocar incoherencias en la semántica de los elementos y representaciones geométricas ineficaces. Para evitar la pérdida de información de un modelo de puente, se propone una herramienta para interpretar los datos IFC relativos a la semántica de los elementos del puente, la geometría y las propiedades de los materiales. Se ha desarrollado una nueva metodología para evaluar cuantitativamente un índice de interoperabilidad para el análisis estructural de puentes (ILBSA), considerando la relevancia de la información importada mediante la definición de valores numéricos de peso. Los resultados de los niveles de interoperabilidad mostraron que el software comercial de análisis estructural de puentes requiere avances significativos en la interpretación de los datos IFC.
Descargas
Referencias
AMANN, J., FLURL, M., JUBIERRE, J.R., BORRMANN, A. An approach to describe arbitrary transition curves in an IFC-based alignment product data model, in: The 15th International Conference on Computing in Civil and Building Engineering (2014), Orlando, pp. 933–941. https://doi.org/10.1061/9780784413616.116.
AMANN, J., BORRMANN, A., SINGER, D. Extension of the upcoming IFCAlignment standard with cross sections for road design, in: Proceeding of the International Conference on Civil and Building Engineering Informatics (2015), Tokyo, pp. 22–24.
BISWAS, H.K., SIM, T.Y., LAU, S.L. Impact of Building Information Modelling and Advanced Technologies in the AEC Industry: A Contemporary Review and Future Directions, Journal of Building Engineering 82 (2024) pp. 108165. https://doi.org/10.1016/j.jobe.2023.108165.
BORRMANN, A., BEETZ, J., KOCH, C., LIEBICH, T. Industry Foundation Classes: A standardized data model for the vendor-neutral exchange of digital building models. Building Information Modeling: Technology foundations and industry practice (2018), pp 81–126.
BORRMANN, A., BERKHAN, V. Principles of Geometric Modeling, in: Building Information Modeling (2018); Borrmann, A., König, M.,Koch, C., Beetz, J., Eds.; Springer: Cham, Switzerland, pp. 27–41. https://doi.org/10.1007/978-3-319-92862-3.
BORRMANN, A., MUHIC, S., HYVÄRINEN, J., CHIPMAN, T., JAUD, S., CASTAING, C., DUMOULIN, C., LIEBICH, T., MOL, L. The IFC-BRIDGE Project – Extending the IFC standard to enable high-quality exchange of bridge information models, in: Proceedings of the European Conference on Computing in Construction, European Council on Computing in Construction (2019), Chania, pp. 377–386. https://doi.org/10.35490/EC3.2019.193.
CEROVSEK, T. A review and outlook for a “Building Information Model” (BIM): A multi-standpoint framework for technological development, Advanced Engineering Informatics 25 (2011), pp. 224–244. https://doi.org/10.1016/j.aei.2010.06.003.
CHEN, P.H., CUI, L., WAN, C., YANG, Q., TING, S.K., TIONG, R.L.K. Implementation of IFC-based web server for collaborative building design between architects and structural engineers, Automation in Construction 14 (2005) pp. 115–128. https://doi.org/10.1016/j.autcon.2004.08.013.
DENG, X.Y., CHANG, T.-Y.P. Creating structural model from IFC-based architectural model, in: Proceedings of the Joint CIB W78, W102, ICCCBE, ICCC, and DMUCE International Conference on Computing and Decision Making in Civil and Building Engineering (2006), Montreal, pp. 3687–3695.
EL DEBS, M.K., Pontes de concreto com ênfase na aplicação de elementos pré-moldados, 1st edition, Oficina de Textos (2021) (ISBN 978-65-86235-31-9).
GAO, G., LIU, Y.-S., WU, J.-X., GU, M., YANG, X.-K., LI, H.-L., IFC Railway: A Semantic and Geometric Modeling Approach for Railways based on IFC, in: 16th International Conference on Computing in Civil and Building Engineering (2016), Osaka, pp. 1188–1195.
GIRARDET, A., BOTON, C. A parametric BIM approach to foster bridge project design and analysis, Automation in Construction 126 (2021), pp. 103679. https://doi.org/10.1016/j.autcon.2021.103679.
HASSANIEN SERROR M., INOUE, J., ADACHI, Y., FUJINO, Y. Shared computer-aided structural design model for construction industry (infrastructure), CAD Computer Aided Design 40 (2008), pp. 778–788. https://doi.org/10.1016/j.cad.2007.07.003.
HU, H., CHEN, S., SRIKONDA, R., ALI, N. Development of alignment-based parametric data exchange schema for bridge geometry, Transportation Research Record 2460 (2014), pp. 22–30. https://doi.org/10.3141/2460-03.
HU, Z.Z., ZHANG, X.Y., WANG, H.W., KASSEM, M. Improving interoperability between architectural and structural design models: An industry foundation classes-based approach with web-based tools, Automation in Construction 66 (2016), pp. 29–42. https://doi.org/10.1016/j.autcon.2016.02.001.
JAUD, Š., ESSER, S., BORRMANN, A., WILKSTRÖM, L., MUHIC, S., MIRTSCHIN, J. A critical analysis of linear placement in IFC models, in: European Conference on Product and Process Modeling (2021), Moscow, pp. 1–8. https://doi.org/https://doi.org/10.1201/9781003191476.
JEPSEN, M.S., DAMKILDE, L. A direct and fully general implementation of influence lines/surfaces in finite element software, Advances in Engineering Software 120 (2016), pp. 55–61. https://doi.org/10.1016/j.advengsoft.2016.04.006.
JI, Y., BEETZ, J., BONSMA, P., NISBET, N., KATZ, C., BORRMANN, A. Integration of Parametric Geometry into IFC-Bridge, Proceedings of the 23rd European Conference Forum Bauinformatik (2011), Cork, pp. 1–8.
JI, Y., BORRMANN, A., OBERGRIEBER, M. Exchange of parametric bridge models using a neutral data format, Journal of Computing in Civil Engineering 27.6 (2012), pp. 593–606. https://doi.org/10.1061/41182(416)65.
JIANG, S., FENG, X., ZHANG, B., SHI, J., Semantic enrichment for BIM: Enabling technologies and applications, Advanced Engineering Informatics 56 (2023) pp. 101961. https://doi.org/10.1016/j.aei.2023.101961.
JUSTO, A., LAMAS, D., SANCHEZ-RODRIGUEZ, A., SOILÁN, M., RIVEIRO, B. Generating IFC-compliant models and structural graphs of truss bridges from dense point clouds, Automation in Construction 149 (2023), pp. 104786. https://doi.org/10.1016/j.autcon.2023.104786.
KARAMAN, S., CHEN, S., RATNAGARAN, B. Three-dimensional parametric data exchange for curved steel bridges, Transportation Research Record (2013), pp. 27–34. https://doi.org/10.3141/2331-03.
KHATTRA, S., PUNJAB, I., SINGH, H. Generating Structural Model through Automatic Data Extraction using Openbim Technology, International Journal of Advanced Research in Engineering and Technology 11 (2020) pp. 602–613. https://doi.org/10.34218/IJARET.11.7.2020.060.
KRIJNEN, T., NOARDO, F., OHORI, K.A., LEDOUX, H., STOTER, J. Validation and Inference of Geometrical Relationships in IFC, in: 37th CIB W78 Conference (2020), São Paulo, pp. 98–111. https://doi.org/10.46421/2706-6568.37.2020.paper008.
KUMAR, B., CAI, H., HASTAK, M. An assessment of benefits of using BIM on an infrastructure project, American Society of Civil Engineers (2017) pp. 88–95. https://doi.org/10.1061/9780784481219.008.
KWON, T.H., PARK, S.I., JANG, Y.H., LEE, S.H. Design of railway track model with three-dimensional alignment based on extended industry foundation classes, Applied Sciences 10 (2020), pp. 1–19. https://doi.org/10.3390/app10103649.
LAI, H., DENG, X. Interoperability analysis of ifc-based data exchange between heterogeneous BIM software, Journal of Civil Engineering and Management 24 (2018), pp. 537–555. https://doi.org/10.3846/jcem.2018.6132.
LEE, S.H., KIM, B.G. IFC extension for road structures and digital modeling, Procedia Engineering (2011), pp. 1037–1042. https://doi.org/10.1016/j.proeng.2011.07.130.
LEE, S.-H., PARK, S.I., PARK, J., SEO, K.-W. Open BIM-based Information Modeling of Railway Bridges and its Application Concept, in: International Conference on Computing in Civil and Building Engineering, ASCE (2014), Orlando, pp. 504–511. https://doi.org/10.1061/9780784413616.06336.
LEE, K.M., LEE, Y.B., SHIM, C.S., PARK, K.L. Bridge information models for construction of a concrete box-girder bridge, Structure and Infrastructure Engineering 8 (2012), pp. 687–703. https://doi.org/10.1080/15732471003727977.
LIU, Z.-Q., LI, Y.-G., ZHANG, H.-Y. IFC-based integration tool for supporting information exchange from architectural model to structural model, Journal of Central South University Technology 17 (2010), pp. 1344–1350. https://doi.org/10.1007/s11771−010−0640−z.
LIU, Z.Q., ZHANG, F., ZHANG, J. The building information modeling and its use for data transformation in the structural design stage, Journal of Applied Science and Engineering 19 (2016), pp. 273–284. https://doi.org/10.6180/jase.2016.19.3.05.
LU, R., BRILAKIS, I. Digital twinning of existing reinforced concrete bridges from labelled point clusters, Automation in Construction 105 (2019), pp. 102837. https://doi.org/10.1016/j.autcon.2019.102837.
LUTTUN, J., KRIJNEN, T. An Approach for Data Extraction, Validation and Correction Using Geometrical Algorithms and Model View Definitions on Building Models, in: Proceedings of the 18th International Conference on Computing in Civil and Building Engineering. Springer 98 (2020): pp. 529–543. https://doi.org/10.1007/978-3-030-51295-8_38.
MARKIC, Š. IFC-Bridge: Previous initiatives and their proposals, in: The 29th Forum Bauinformatik (2017), Desden, pp. 12–19.
PARK, S.I., LEE, S.H, ALMASI, A., SONG, J.H. Extended IFC-based strong form meshfree collocation analysis of a bridge structure, Automation in Construction 119 (2020), pp. 103364. https://doi.org/10.1016/j.autcon.2020.103364.
PUKL, R., PALEK, P., CERVENKA, J. The possibility of using BIM for nonlinear life-cycle analysis of concrete structures, in: The Fifth International Symposium on Life-Cycle Civil Engineering (IALCCE 2016), Delft, Netherlands (2016), pp. 655–661. https://doi.org/https://doi.org/10.1201/9781315375175.
QIN, L., DENG, X.Y., LA LIU, X. Industry foundation classes based integration of architectural design and structural analysis, Journal of Shanghai Jiaotong University Science 16 (2011), pp. 83–90. https://doi.org/10.1007/s12204-011-1099-2.
RAMAJI, I.J., MEMARI, A.M. Interpretation of structural analytical models from the coordination view in building information models, Automation in Construction 90 (2018) pp. 117–133. https://doi.org/10.1016/j.autcon.2018.02.025.
REN, R., ZHANG, J., DIB, H.N. BIM interoperability for structure analysis, in: Construction Research Congress: Construction Information Technology - Selected Papers from the Construction Research Congress, ASCE (2018), pp. 470–479. https://doi.org/10.1061/9780784481264.046.
REN, R., ZHANG, J. Comparison of BIM Interoperability Applications at Different Structural Analysis Stages, in: Construction Research Congress: Computer Applications - Selected Papers from the Construction Research Congress, ASCE (2020), pp. 537–545. https://doi.org/10.1061/9780784482865.057.
SAMPAIO, A.Z. Geometric modeling of box girder deck for integrated bridge graphical system, Automation in Construction 12 (2003), pp. 55–66. https://doi.org/10.1016/S0926-5805(02)00040-7.
TANAKA, F., HORI, M., ONOSATO, M., DATE, H., KANAI, S. Bridge Information Model Based on IFC Standards and Web Content Providing System for Supporting an Inspection Process, in: The 16th International Conference on Computing in Civil and Building Engineering (2017), Osaka, pp. 1140–1147.
TRZECIAK, M., BORRMANN, A. Design-to-design exchange of bridge models using IFC: A case study with Revit and Allplan, in: Engineering and Construction – Proceedings of the 12th European Conference on Product and Process Modeling (2018), Munich, pp. 231–239. https://doi.org/https://doi.org/10.1201/9780429506215.
WAGNER, A., BONDUEL, M., PAUWELS, P., RÜPPEL, U. Representing construction-related geometry in a semantic web context: A review of approaches, Automation in Construction 115 (2020), pp. 103130. https://doi.org/10.1016/j.autcon.2020.103130.
WANG, X., YANG, H., ZHANG, Q.L. Research of the IFC-based Transformation Methods of Geometry Information for Structural Elements, Journal of Intelligent and Robotic Systems: Theory and Applications 79 (2015), pp. 465–473. https://doi.org/10.1007/s10846-014-0111-0.
XU, Z., RAO, Z., GAN, V.J.L., DING, Y., WAN, C., LIU, X. Developing an Extended IFC Data Schema and Mesh Generation Framework for Finite Element Modeling, Advances in Civil Engineering 2019 (2019), pp. 1–19. https://doi.org/10.1155/2019/1434093.
YABUKI, N., SHITANI, T. An IFC-based product model for RC or PC slab bridges, CIB Report (2003).
YU, Y., KIM, S., JEON, H., KOO, B. A Systematic Review of the Trends and Advances in IFC Schema Extensions for BIM Interoperability, Applied Sciences 13 (2023) 12560. https://doi.org/10.3390/app132312560.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Me. Guilherme Palla Teixeira, Dr. José Carlos Lopes Ribeiro, Dr. Kléos Magalhães Lenz César Jr, Me. Lucas Andrade Nunes, Dr. José Maria Franco de Carvalho, Dr. Diôgo Silva de Oliveira, Dr. Gustavo Henrique Nalon

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).