Quality of child anthropometric data from SISVAN, Brazil, 2008-2017
DOI:
https://doi.org/10.11606/s1518-8787.2023057004655Keywords:
Data Reliability, Food and Nutrition Surveillance, Health Information Systems, Anthropometry, ChildAbstract
OBJECTIVE: To evaluate the quality of anthropometric data of children recorded in the Food and Nutrition Surveillance System (SISVAN) from 2008 to 2017. METHOD: Descriptive study on the quality of anthropometric data of children under five years of age admitted in primary care services of the Unified Health System, from the individual databases of SISVAN. Data quality was annually assessed using the indicators: coverage, completeness, sex ratio, age distribution, weight and height digit preference, implausible z-score values, standard deviation, and normality of z-scores. RESULTS: In total, 73,745,023 records and 29,852,480 children were identified. Coverage increased from 17.7% in 2008 to 45.4% in 2017. Completeness of birth date, weight, and height corresponded to almost 100% in all years. The sex ratio was balanced and approximately similar to the expected ratio, ranging from 0.8 to 1. The age distribution revealed higher percentages of registrations from the ages of two to four years until mid-2015. A preference for terminal digits “zero” and “five” was identified among weight and height records. The percentages of implausible z-scores exceeded 1% for all anthropometric indices, with values decreasing from 2014 onwards. A high dispersion of z-scores, including standard deviations between 1.2 and 1.6, was identified mainly in the indices including height and in the records of children under two years of age and residents in the North, Northeast, and Midwest regions. The distribution of z-scores was symmetric for all indices and platykurtic for height/age and weight/age. CONCLUSIONS: The quality of SISVAN anthropometric data for children under five years of age has improved substantially between 2008 and 2017. Some indicators require attention, particularly for height measurements, whose quality was lower especially among groups more vulnerable to nutritional problems.
References
Gorstein J, Akré J. The use of anthropometry to assess nutritional status. World Health Stat Q.1988;41(2):48–58.
World Health Organization. Physical status: the use and interpretation of anthropometry. Geneva: World Health Organization; 1995.
Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017 Dec;390(10113):2627-42.
https://doi.org/10.1016/S0140-6736(17)32129-3
Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017 Jul;377(1):13-27. https://doi.org/10.1056/NEJMoa1614362
Rodriguez-Martinez A, Zhou B, Sophiea MK, Bentham J, Paciorek CJ, Iurilli ML, et al. Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 populationbased studies with 65 million participants. Lancet. 2020 Nov;396(10261):1511-24.
https://doi.org/10.1016/S0140-6736(20)31859-6
World Health Organization. Global nutrition monitoring framework: operational guidance for tracking progress in meeting targets for 2025. Geneva: World Health Organization; 2017.
Ministério da Saúde (BR). Marco de referência da vigilância alimentar e nutricional na atenção básica. Brasília, df: Ministério da Saúde; 2015.
Bagni UV, Barros DC. Erro em antropometria aplicada à avaliação nutricional nos serviços de saúde: causas, consequências e métodos de mensuração. Nutrire. 2015;40(2):226-36. https://doi.org/10.4322/2316-7874.18613
Corsi DJ, Perkins JM, Subramanian SV. Child anthropometry data quality from demographic and health surveys, multiple indicator cluster surveys, and national nutrition surveys in the West Central Africa region: are we comparing apples and oranges? Glob Health Action. 2017;10(1):1328185. https://doi.org/10.1080/16549716.2017.1328185
Perumal N, Namaste S, Qamar H, Aimone A, Bassani DG, Roth DE. Anthropometric data quality assessment in multisurvey studies of child growth. Am J Clin Nutr. 2020 Sep;112 Suppl 2:806S-15S. https://doi.org/10.1093/ajcn/nqaa162
Nascimento FA, Silva SA, Jaime PC. [Coverage of assessment of nutritional status in the Brazilian Food and Nutritional Surveillance System, 2008-2013]. Cad Saude Publica. 2017 Dec;33(12):e00161516. Português. https://doi.org/10.1590/0102-311X00161516
Mourão E, Gallo CO, Nascimento FA, Jaime PC. Temporal trend of Food and Nutrition Surveillance System coverage among children under 5 in the Northern Region of Brazil, 2008-2017. Epidemiol Serv Saude. 2020;29(2):e2019377. https://doi.org/10.5123/S1679-49742020000200026
Finaret AB, Hutchinson M. Missingness of height data from the demographic and health surveys in Africa between 1991 and 2016 was not random but is unlikely to have major implications for biases in estimating stunting prevalence or the determinants of child height. J Nutr. 2018 May;148(5):781-9. https://doi.org/10.1093/jn/nxy037
Nannan N, Dorrington R, Bradshaw D. Estimating completeness of birth registration in South Africa, 1996-2011. Bull World Health Organ. 2019 Jul;97(7):468-76. https://doi.org/10.2471/BLT.18.222620
Lyons-Amos M, Stones T. Trends in demographic and health survey data quality: an analysis of age heaping over time in 34 countries in Sub Saharan Africa between 1987 and 2015. BMC Res Notes. 2017 Dec;10(1):760. https://doi.org/10.1186/s13104-017-3091-x
Bopp M, Faeh D. End-digits preference for self-reported height depends on language. BMC Public Health. 2008 Sep;8(8):342. https://doi.org/10.1186/1471-2458-8-342
Lawman HG, Ogden CL, Hassink S, Mallya G, Vander Veur S, Foster GD. Comparing methods for identifying biologically implausible values in height, weight, and body mass index among youth. Am J Epidemiol. 2015 Aug;182(4):359-65. https://doi.org/10.1093/aje/kwv057
Mei Z, Grummer-Strawn LM. Standard deviation of anthropometric Z-scores as a data quality assessment tool using the 2006 WHO growth standards: a cross country analysis. Bull World Health Organ. 2007 Jun;85(6):441-8. https://doi.org/10.2471/BLT.06.034421
World Health Organization. United Nations Children’s Fund. Recommendations for data collection, analysis and reporting on anthropometric indicators in children under 5 years old. Geneva: World Health Organization, UNICEF; 2019.
Ministério da Saúde (BR). Manual operacional para uso do sistema de vigilância alimentar e nutricional: SISVAN VERSÃO 3.0. Brasília, DF: Ministério da Saúde; 2017.
World Health Organization. WHO Anthro Survey Analyzer and other tools. Geneva: World Health Organization; 2020 [citado 18 fev 2022]. Disponível em: https://www.who.int/tools/child-growth-standards/software
Ministério da Saúde (BR). Portaria nº 2975, de 14 de dezembro de 2011. Apoiar financeiramente a estruturação da Vigilância Alimentar e Nutricional. Brasília, DF: Ministério da Saúde; 2011.
Ministério da Cidadania (BR). Secretaria de Avaliação e Gestão da Informação. VIS DATA 3 beta. Quantidade total de pessoas em famílias beneficiárias do Programa Bolsa Família. Brasília, DF: Ministério da Cidadania; 2020 [citado 18 fev 2022]. Disponível em: https://aplicacoes.mds.gov.br/sagi/vis/data3/data-explorer.php
Ministério da Cidadania (BR). Resultado do acompanhamento das condicionalidades de saúde no 1º semestre de 2020. Brasília, DF: Ministério da Cidadania; 2020 [citado 13 jun 2022]. Disponível em: https://www.gov.br/cidadania/pt-br/acoes-e-programas/outros/bolsa-familia/informe-gestores/informe-gestores/resultado-do-acompanhamento-das-condicionalidades-desaude-no-1o-semestre-de-2020
Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de Recuperação Automática - Sidra. Projeção da população: tabela 7358 - População, por sexo e idade [citado 18 fev 2022]. Disponível em: https://sidra.ibge.gov.br/tabela/7358
Machado PM, Lacerda JT, Colussi CF, Calvo MC. Estrutura e processo de trabalho para as ações de alimentação e nutrição na Atenção Primária à Saúde no Brasil, 2014. Epidemiol Serv Saude. 2021 Apr;30(2):e2020635. https://doi.org/10.1590/s1679-49742021000200015
Larsen AF, Headey D, Masters WA. Misreporting month of birth: diagnosis and implications for research on nutrition and early childhood in developing countries. demography. 2019 Apr;56(2):707-28. https://doi.org/10.1007/s13524-018-0753-9
World Health Organization. Multicentre Growth Reference Study Group. Enrolment and baseline characteristics in the WHO Multicentre Growth Reference Study. Acta Paediatr Suppl. 2006 Apr;450:7-15. https://doi.org/10.1111/j.1651-2227.2006.tb02371.x.
Ribeiro-Silva RC, Silva NJ, Felisbino-Mendes MS, Falcão IR, Andrade RD, Silva SA, et al. Time trends and social inequalities in child malnutrition: nationwide estimates from Brazil’s food and nutrition surveillance system, 2009-2017. Public Health Nutr. 2021 Dec;25(12):1-11. https://doi.org/10.1017/S136898002100488
Silva NJ, Ribeiro-Silva RC, Rasella D, Alves FJ, Campello T, Fiaccone RL, et al. Shifts towards overweight and double burden of malnutrition among socio-economically vulnerable children: a longitudinal ecological analysis of Brazilian municipalities. Public Health Nutr. 2021 Oct;24(15):4908-17. https://doi.org/10.1017/S1368980020004735
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Natanael de Jesus Silva, Juliana Freitas de Mello e Silva, Thaís Rangel Bousquet Carrilho, Elizabete de Jesus Pinto, Rafaella da Costa Santin de Andrade, Sara Araújo Silva, Jéssica Pedroso, Ana Maria Spaniol, Gisele Ane Bortolini, Andhressa Fagundes, Eduardo Augusto Fernandes Nilson, Rosemeire Leovigildo Fiaccone, Gilberto Kac, Maurício Lima Barreto, Rita de Cássia Ribeiro-Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.