Unsupervised classification of images in generative computational design processes

Authors

DOI:

https://doi.org/10.11606/gtp.v19i3.227541

Keywords:

deep learning, exploration of the design space, convolutional autoencoder, ; three-dimensional studies

Abstract

The use of computational techniques in Generative Design processes allows for the creation of numerous solutions. To explore these iterations, it is necessary to adopt approaches that help organize and analyze this vast solution space. This study proposes a deep learning-based methodology for unsupervised image classification, enabling the automatic exploration of generative system iterations without the need for manual labeling. The research uses the Grasshopper software to generate the iterations and transform them into images, a convolutional autoencoder to extract compact representations of the images, dimensionality reduction techniques such as UMAP, and the Gaussian Mixture Model algorithm for data clustering. The work demonstrates that this approach can organize the solution space based on morphological and spatial characteristics, contributing to new forms of interaction between the designer and artificial intelligence in the design field. The codes and images used are available here: https://github.com/researchai2/cluster2.

 

Downloads

Download data is not yet available.

Author Biographies

  • Daniel Ribeiro Alves Barboza Vianna, Pontifícia Universidade Católica do Rio de Janeiro.

    Daniel Ribeiro Alves Barboza Vianna obteve o grau de Doutor em Desenho Industrial pela PUC-Rio em 2023. Anteriormente, ele concluiu dois mestrados: um em Arquitetura em 2011 e outro em Desenho Industrial em 2014, ambos pelo Pratt Institute. Atualmente, Vianna está focado em pesquisas e projetos na área emergente do Design Computacional, com um enfoque particular no uso de técnicas de aprendizado profundo.

  • Claudio Freitas de Magalhães, Pontifícia Universidade Católica do Rio de Janeiro

    Professor Associado do Departamento de Arte e Design da PUC-Rio (D.A.D. / PUC-Rio). Possui graduação em Desenho Industrial pela Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio - (1985), MBA em Marketing pelo IAG / PUC-Rio - (1991), MSc (1994) e D.Sc. (2003) em Engenharia de Produção pela Universidade Federal do Rio de Janeiro - UFRJ. Foi Visiting Scholar do Departamento de Ciências Cognitivas, Linguísticas e Psicológicas (CLPS) da Brown University, com bolsa de Pós-Doutorado do CNPq (2017 a julho de 2018). Atua na Graduação e no Programa de Pós-Graduação (M. e D.) em Design.

  • Érico Franco Mineiro, Universidade Federal de Minas Gerais

    Professor do Depto. de Tecnologia do Design, Arquitetura e Urbanismo da Universidade Federal de Minas Gerais. É doutor em Design pela PUC-Rio, mestre em Engenharia de Produção pela UFMG e bacharel em Desenho Industrial - Projeto de Produto pela UEMG.

References

ABADI, Martín et al. TensorFlow: A system for large-scale machine learning. Em: PROCEEDINGS OF THE 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, OSDI 2016 2016, Anais [...]. : USENIX Association, 2016. p. 265–283. Disponível em: https://arxiv.org/abs/1605.08695v2. Acesso em: 10 out. 2024.

ABUZURAIQ, Ahmed M.; ERHAN, Halil. The many faces of similarity: A visual analytics approach for design space simplification. Em: RE: ANTHROPOCENE, DESIGN IN THE AGE OF HUMANS - PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED ARCHITECTURAL DESIGN RESEARCH IN ASIA, CAADRIA 2020 2020, Anais [...]. : The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), 2020. p. 485–494. DOI: 10.52842/CONF.CAADRIA.2020.1.485. Acesso em: 31 mar. 2024.

AHLQUIST, Sean. Reciprocal Relationships of Materiality and Human Engagement. Em: Paradigms of Performativity in Design and Architecture. New York: Routledge, 2020.

BHATT, Mehul; SCHULTZ, Carl; HUANG, Minqian. The shape of empty space: Human-centred cognitive foundations in computing for spatial design. Em: PROCEEDINGS OF IEEE SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING, VL/HCC 2012, Anais [...]. [s.l: s.n.] p. 33–40. DOI: 10.1109/VLHCC.2012.6344477. Acesso em: 31 mar. 2024.

BROWN, Nathan;; MUELLER, Caitlin. Designing with data: Moving beyond the design space catalog. Em: ACADIA 2017 DISCIPLINES & DISRUPTION 2017, Anais [...]. [s.l: s.n.] p. 154–163.

CHEN, Haoyu; LI, Wenbo; GU, Jinjin; REN, Jingjing; SUN, Haoze; ZOU, Xueyi; ZHANG, Zhensong; YAN, Youliang; ZHU, Lei. Low-Res Leads the Way: Improving Generalization for Super-Resolution by Self-Supervised Learning. Em: PROCEEDINGS OF THE IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) 2024, Anais [...]. [s.l: s.n.] p. 25857–25867. Disponível em: https://arxiv.org/abs/2403.02601v1. Acesso em: 9 out. 2024.

CHOLLET, François. Keras: The Python Deep Learning Library. 2015. Disponível em: https://keras.io/. Acesso em: 10 out. 2024.

FAZI, M. Beatrice. Beyond Human: Deep Learning, Explainability and Representation. Algorithmic Thought, [S. l.], v. 38, 2020. DOI: 10.1177/0263276420966386. Acesso em: 6 out. 2021.

FISCHER, Thomas; HERR, Christiane M. Teaching Generative Design. Proceedings of the 4th International Conference on Generative Art, [S. l.], 2001. Disponível em: https://www.researchgate.net/publication/30869860_Teaching_Generative_Design. Acesso em: 21 out. 2021.

GOODFELLOW, Ian; POUGET-ABADIE; MIRZA, Mehdi; XU, Bing; WARDE-FARLEY, David; OZAIR, Sherjil; COURVILLE, Aaron; BENGIO, Yoshua. Generative Adversarial Nets. Proceedings of the International Conference on Neural Information Processing Systems, [S. l.], 2014. Disponível em: https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html. Acesso em: 3 mar. 2022.

HANNAH, Gail Greet. Elements of Design. New York: Princeton Architecture Press, 2002.

HUANG, Jeffrey; JOHANES, Mikhael; KIM, Frederick Chando; DOUMPIOTI, Christina; HOLZ, Georg Christoph. On GANs, NLP and Architecture: Combining Human and Machine Intelligences for the Generation and Evaluation of Meaningful Designs. Technology|Architecture + Design, [S. l.], v. 5, n. 2, p. 207–224, 2021. DOI: 10.1080/24751448.2021.1967060. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/24751448.2021.1967060. Acesso em: 7 out. 2024.

JANNANI, Oussama; IDRISSI, Najlae; CHAKIB, Houda. An Image Compression Approach Based on Convolutional AutoEncoder. Lecture Notes in Networks and Systems, [S. l.], v. 806 LNNS, p. 78–91, 2023. DOI: 10.1007/978-3-031-46584-0_7. Disponível em: https://link.springer.com/chapter/10.1007/978-3-031-46584-0_7. Acesso em: 7 out. 2024.

JOHANES, Mikhael; HUANG, Jeffrey. Deep Learning Isovist: Unsupervised Spatial Encoding in Architecture. Em: PAPER PRESENTED AT 2021 ASSOCIATION FOR COMPUTER AIDED DESIGN IN ARCHITECTURE ANNUAL CONFERENCE, ACADIA 2021, VIRTUAL, ONLINE. 2021, Anais [...]. [s.l: s.n.] Disponível em: https://scholar.ui.ac.id/en/publications/deep-learning-isovist-unsupervised-spatial-encoding-in-architectu. Acesso em: 31 mar. 2024.

LEACH, Neil. Architecture in the age of artificial intelligence : an introduction to AI for architects. London: Bloomsbury, 2022. . Acesso em: 3 mar. 2022.

LI, Shuang; CORNEY, Jonathan. Multi-view expressive graph neural networks for 3D CAD model classification. Computers in Industry, [S. l.], v. 151, p. 103993, 2023. DOI: 10.1016/J.COMPIND.2023.103993. Acesso em: 31 mar. 2024.

MCINNES, Leland; HEALY, John; MELVILLE, James. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. Journal of Open Source Software, [S. l.], 2018. DOI: 10.21105/joss.00861. Disponível em: https://arxiv.org/abs/1802.03426v3. Acesso em: 7 out. 2024.

MORDVINTSEV, Alexander; OLAH, Christopher; TYKA, Mike. Inceptionism: Going Deeper into Neural Networks. 2015. Disponível em: https://research.google/blog/inceptionism-going-deeper-into-neural-networks/. Acesso em: 7 out. 2024.

NATIVIDADE, Verônica Gomes. Fraturas metodológicas nas arquiteturas digitais. 2010. UNIVERSIDADE DE SÃO PAULO , São Paulo, 2010. Acesso em: 2 maio. 2020.

PEDREGOSA, Fabian et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, [S. l.], v. 12, n. 85, p. 2825–2830, 2011. Disponível em: http://jmlr.org/papers/v12/pedregosa11a.html. Acesso em: 10 out. 2024.

PEFFERS, Ken; TUUNANEN, Tuure; ROTHENBERGER, Marcus A.; CHATTERJEE, Samir. A design science research methodology for information systems research. Journal of Management Information Systems, [S. l.], v. 24, n. 3, p. 45–77, 2007. DOI: 10.2753/MIS0742-1222240302. Acesso em: 7 out. 2024.

Rowena Reed Kostellow Fund - 3-D Design Education Resource. [s.d.]. Disponível em: http://rowenafund.org/. Acesso em: 21 nov. 2024.

SCHMARJE, Lars; SANTAROSSA, Monty; SCHRÖDER, Simon Martin; KOCH, Reinhard. A Survey on Semi-, Self- and Unsupervised Learning for Image Classification. IEEE Access, [S. l.], v. 9, p. 82146–82168, 2021. DOI: 10.1109/ACCESS.2021.3084358. Acesso em: 7 out. 2024.

SCHWARZ, Gideon. “Estimating the Dimension of a Model.” The Annals of Statistics, [S. l.], v. 6, n. 2, p. 461–464, 1978. DOI: 10.2307/2958889. Disponível em: http://www.citeulike.org/user/abhishekseth/article/90008. Acesso em: 15 out. 2024.

VAN AKEN, Joan Ernst. Management research as a design science: Articulating the research products of mode 2 knowledge production in management. British Journal of Management, [S. l.], v. 16, n. 1, p. 19–36, 2005. DOI: 10.1111/J.1467-8551.2005.00437.X. Acesso em: 7 out. 2024.

XU, Rui; WUNSCH, Donald. Survey of clustering algorithms. IEEE Transactions on Neural Networks, [S. l.], v. 16, n. 3, p. 645–678, 2005. DOI: 10.1109/TNN.2005.845141. Disponível em: https://www.researchgate.net/publication/3303538_Survey_of_Clustering_Algorithms. Acesso em: 7 out. 2024.

ZHANG, Ji; TAN, Leonard; TAO, Xiaohui; PHAM, Thuan; CHEN, Bing. Relational intelligence recognition in online social networks — A survey. Computer Science Review, [S. l.], v. 35, p. 100221, 2020. DOI: 10.1016/J.COSREV.2019.100221. Acesso em: 9 out. 2024.

Published

2024-12-31

How to Cite

VIANNA, Daniel Ribeiro Alves Barboza; MAGALHÃES, Claudio Freitas de; MINEIRO, Érico Franco. Unsupervised classification of images in generative computational design processes. Gestão & Tecnologia de Projetos (Design Management and Technology), São Carlos, v. 19, n. 3, p. 27–47, 2024. DOI: 10.11606/gtp.v19i3.227541. Disponível em: https://periodicos.usp.br/gestaodeprojetos/article/view/227541.. Acesso em: 9 mar. 2025.